精英家教网 > 高中数学 > 题目详情

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

【答案】()

()见解析;

()见解析.

【解析】

()由题意利用古典概型计算公式可得满足题意的概率值;

()首先确定X可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可.

()由题意结合概率的定义给出结论即可.

()由题意可知,两种支付方式都是用的人数为:人,则:

该学生上个月AB两种支付方式都使用的概率.

()由题意可知,

仅使用A支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占

仅使用B支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占

X可能的取值为0,1,2.

X的分布列为:

X

0

1

2

其数学期望:.

()我们不认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.理由如下:

随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率。

学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了小概率事件”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证上递增;

2)若上的值域是,求实数a的取值范围;

3)当上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表示两个不同的平面 表示两条不同直线对于下列两个命题

①若”是“”的充分不必要条件;

②若”是“”的充要条件.判读正确的是(

A. ①②都是真命题 B. ①是真命题,②是假命题

C. ①是假命题,②是真命题 D. ①②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.

(1)分别计算这10名同学中,男女生测试的平均成绩;

(2)若这10名同学中,男生和女生的国学素养测试成绩的标准差分别为S1S2,试比较S1S2的大小(不必计算,只需直接写出结果);

(3)规定成绩大于等于75分为优良,从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与双曲线)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:存在正整数,对任意的,使得成立,则称阶稳增数列.

1)若由正整数构成的数列阶稳增数列,且对任意,数列中恰有,求的值;

2)设等比数列阶稳增数列且首项大于,试求该数列公比的取值范围;

3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=2ax2+2bx,若存在实数x0∈(0t),使得对任意不为零的实数ab均有fx0)=a+b成立,则t的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 (为参数,).

(1)当时,若曲线上存在两点关于点成中心对称,求直线的斜率;

(2)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.

查看答案和解析>>

同步练习册答案