分析 点A(1,1)在直线mx+ny-3mn=0上,m+n=3mn,又mn>0,可得$\frac{1}{m}+\frac{1}{n}$=3,再利用“乘1法”与基本不等式的性质即可得出.
解答 解:点A(1,1)在直线mx+ny-3mn=0上,∴m+n=3mn,
又mn>0,∴$\frac{1}{m}+\frac{1}{n}$=3,
∴m+n=$\frac{1}{3}$(m+n)$(\frac{1}{m}+\frac{1}{n})$=$\frac{1}{3}$(2+$\frac{n}{m}$+$\frac{m}{n}$)≥$\frac{1}{3}$$(2+2\sqrt{\frac{n}{m}•\frac{m}{n}})$=$\frac{4}{3}$,当且仅当n=m=$\frac{2}{3}$取等号.
则m+n的最小值为$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.
点评 本题考查了基本不等式的性质、直线方程,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①②③ | B. | ②③④ | C. | ②④⑤ | D. | ③④⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com