精英家教网 > 高中数学 > 题目详情

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

【答案】D

【解析】

将不等式cos2xasinx恒成立转化为asinx+1sin2x恒成立,构造函数fy,利用基本不等式可求得fymin3,于是问题转化为asinxsin2x2恒成立.通过对sinx0sinx0sinx0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.

解:实数xy,不等式cos2xasinx恒成立asinx+1sin2x恒成立,

fy

asinx+1sin2xfymin

y0fy23(当且仅当y6时取“=”),fymin3

所以,asinx+1sin2x3,即asinxsin2x2恒成立.

sinx0asinx恒成立,令sinxt,则0t1,再令gt)=t0t1),则agtmin

由于g′(t)=10

所以,gt)=t在区间(01]上单调递减,

因此,gtming1)=3

所以a3

sinx0,则asinx恒成立,同理可得a≥﹣3

sinx002恒成立,故aR

综合①②③,﹣3a3

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三棱锥PABC,点PABC都在半径为的球面上,若PAPBPC两两互相垂直,则球心到截面ABC的距离为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的423日为世界读书日,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:

1)求样本学生一个月阅读时间的中位数.

2)已知样本中阅读时间低于的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.

列联表

总计

总计

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中错误的是(

A.的图像关于点对称B.的图像关于直线对称

C.的最大值为D.是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性,并证明有且仅有两个零点;

(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为椭圆的右准线,直线轴的交点记为,过右焦点的直线与椭圆交于两点.

1)设点在直线上,且满足,若直线与线段交于点,求证:点为线段的中点;

2)设点的坐标为,直线与直线交于点,试问是否为定值,若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一名曰堑堵的几何体,已知 AE⊥底面BCFE DF AE DF = AE = 1 CE =,四边形ABCD 是正方形.

1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑.判断四面体 EABC 是否为鳖臑,若是,写出其 每一个面的直角,并证明;若不是,请说明理由.

2)求四面体 EABC 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据中国生态环境部公布的2017年、2018年长江流域水质情况监测数据,得到如下饼图:

则下列说法错误的是(

A.2018年的水质情况好于2017年的水质情况

B.2018年与2017年相比较,Ⅰ、Ⅱ类水质的占比明显增加

C.2018年与2017年相比较,占比减小幅度最大的是Ⅳ类水质

D.2018年Ⅰ、Ⅱ类水质的占比超过

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上存在零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案