精英家教网 > 高中数学 > 题目详情

【题目】某工厂为生产一种标准长度为的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为,“长度误差”为,只要“长度误差”不超过就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产件.已知每件产品的成本为元,每件合格品的利润为元.在昼、夜两个批次生产的产品中分别随机抽取件,检测其长度并绘制了如下茎叶图:

1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率;

2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.

【答案】1)昼、夜批次合格品概率估计值分别为;(2.

【解析】

1)分别计算出昼、夜批次个样本中合格品的个数,据此可求得这两个批次中合格品的概率;

2)分别计算出昼、夜批次件产品的利润,相加即可得出结果.

1)由样本数据可知,在昼批次的个样本中有个不合格品,有个合格品,合格品的比率为,因此昼批次合格品概率估计值为.

在夜批次的个样本中有个不合格品,有个合格品,合格品的比率为,因此夜批次合格品概率估计值为

2)昼批次合格品的概率为,不合格品的概率为,所以件产品中合格品的均值为件,不合格品的均值为件,所以利润为(元);

夜批次合格品的概率为,不合格品的概率为,所以件产品中合格品的均值为

件,不合格品的均值为件,所以利润为(元).

故这台车床一天的总利润的平均值为(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角梯形中, 分别为的中点,以为圆心, 为半径的圆交,点在弧上运动(如图).若,其中,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会于20191018日至27日在中国武汉举行,中国队以1336442铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为为正三角形,平面平面是线段的中点,是线段上的动点.

1)探究四点共面时,点位置,并证明;

2)当四点共面时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列对任意都有(其中是常数) .

(Ⅰ)当时,求

(Ⅱ)当时,若,求数列的通项公式;

(Ⅲ)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.时,设是数列的前项和,,试问:是否存在这样的“封闭数列”,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在多面体中,平面平面,且四边形为正方形,且//,点分别是的中点.

1)求证:平面

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形为直角梯形,为线段上一点,满足的中点,现将梯形沿折叠(如图2),使平面平面.

1)求证:平面平面

2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

同步练习册答案