精英家教网 > 高中数学 > 题目详情
如图2-①,一个圆锥形容器的高为a,内装有一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为(如图2-②),则图2-①中的水面高度为   
【答案】分析:圆锥正置与倒置时,水的体积不变,另外水面是平行于底面的平面,此平面截得的小圆锥与原圆锥成相似体,它们的体积之比为对应高的立方比.
解答:解:令圆锥倒置时水的体积为V′,圆锥体积为V
 则=
正置后:V=V
则突出的部分V=V
设此时空出部分高为h,则
h3

故水的高度为:a-
故答案为:a-
点评:此题若用V=V计算是比较麻烦的,因为台体的上底面半径还需用 导出来,我们用V=V-V,而V与V的体积之间有比例关系,可以直接求出.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知一个圆锥的底面半径为R,高为h,在其中有一个高为x的内接圆柱(其中R,h均为常数).
(1)当x=
23
h时,求内接圆柱上方的圆锥的体积V;
(2)当x为何值时,这个内接圆柱的侧面积最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知一个圆锥的底面半径为R=1,高为h=2.,一个圆柱的下底面在圆锥的底面上,且圆柱的上底面为圆锥的截面,设圆柱的高为x.
(1)求圆柱的侧面积.
(2)x为何值时,圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)一个圆锥的正(主)视图及其尺寸如图2所示.若一个平 行于圆锥底面的平面将此圆锥截成体积之比为l:7的上、下两部分,则截面的面积为.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省徐州市高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知一个圆锥的底面半径为R,高为h,在其中有一个高为x的内接圆柱(其中R,h均为常数).
(1)当x=h时,求内接圆柱上方的圆锥的体积V;
(2)当x为何值时,这个内接圆柱的侧面积最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-1,一个圆锥形容器的高为,内装有一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为(如图2-2),则图2-1中的水面高度为;      

查看答案和解析>>

同步练习册答案