精英家教网 > 高中数学 > 题目详情
20.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)当m=-1时,若函数h(x)与g(x)在x=x0处的切线平行,求两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

分析 (Ⅰ)分别求出g(x),h(x)的导数,求得切线的斜率,切点,再由点斜式方程可得切线的方程,再由两直线平行间的距离,计算即可得到所求;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,即为x2-mx-lnx≥0,由x>0,可得m≤x-$\frac{lnx}{x}$,设F(x)=x-$\frac{lnx}{x}$,求出导数,讨论x>1,0<x<1导数的符号,判断单调性,可得最小值,即可得到m的范围.

解答 解:(Ⅰ)m=-1时,h(x)=x2+x的导数为h′(x)=2x+1,
g(x)=lnx的导数为g′(x)=$\frac{1}{x}$,
由题意可得2x0+1=$\frac{1}{{x}_{0}}$,解得x0=$\frac{1}{2}$(-1舍去),
即有h(x)在x=$\frac{1}{2}$处的切线的方程为y-$\frac{3}{4}$=2(x-$\frac{1}{2}$),即为2x-y-$\frac{1}{4}$=0;
g(x)在x=$\frac{1}{2}$处的切线的方程为y-ln$\frac{1}{2}$=2(x-$\frac{1}{2}$),即为2x-y-1-ln2=0.
则两切线间的距离为d=$\frac{|1+ln2-\frac{1}{4}|}{\sqrt{1+4}}$=$\frac{(3+4ln2)\sqrt{5}}{20}$;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,
即为x2-mx-lnx≥0,由x>0,可得m≤x-$\frac{lnx}{x}$,
设F(x)=x-$\frac{lnx}{x}$,F′(x)=1-$\frac{1-lnx}{{x}^{2}}$=$\frac{{x}^{2}-1+lnx}{{x}^{2}}$,
当x>1时,F′(x)>0,F(x)递增;当0<x<1时,F′(x)<0,F(x)递减.
即有x=1处取得极小值,且为最小值1,
则有m≤1,即m的取值范围是(-∞,1].

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查不等式恒成立问题的解法,注意运用参数分离和构造函数运用单调性求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点,F为PA中点.
(1)证明:PA⊥平面BEF;
(2)若AD=2BC=2AB=4,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
①$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}$;          
②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n(n∈N*)、${b_n}=1-\frac{1}{n^2}$(n∈N*),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且${c_3}=\frac{1}{4}$,${S_3}=\frac{7}{4}$,证明:数列{Sn}具有“性质m”,并指出M的取值范围;
(3)若数列{dn}的通项公式${d_n}=\frac{{t\;(3•{2^n}-n)+1}}{2^n}$(n∈N*).对于任意的n≥3(n∈N*),数列{dn}具有“性质m”,且对满足条件的M的最小值M0=9,求整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,则△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b,c分别为△ABC三个内角A,B,C的对边,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}{b}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={y|y=x2},B={x|y=lg(2-x),则A∩B=(  )
A.A、[0,2]B.[0,2)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xoy中,椭圆C的标准方程为$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,直线l与x轴交于点E,与椭圆C交于A,B两点.
(1)若点E的坐标为$({\frac{{\sqrt{3}}}{2},0})$,点A在第一象限且横坐标为$\sqrt{3}$,连结点A与原点O的直线交椭圆C于另一点P,求△PAB的面积;
(2)是否存在点E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax3-3x2+1,若f(x)=0存在唯一正实数根x0,则a取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=x4在x=1处的切线方程为(  )
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

查看答案和解析>>

同步练习册答案