精英家教网 > 高中数学 > 题目详情
在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1
分析:由已知,结合递推公式可得,an=Sn-Sn-1=n2an-(n-1)2an-1(n>1),即
an
an-1
=
n-1
n+1
,利用迭代法可求an=a1
a2
a1
a3
a2
an
an-1
解答:解:∵Sn=n2an
当n>1时,Sn-1=(n-1)2an-1
∴an=Sn-Sn-1=n2an-(n-1)2an-1
(n2-1)an=(n-1)2an-1
an
an-1
=
n-1
n+1

∴an=a1
a2
a1
a3
a2
an
an-1
=
1
2
×
1
3
×
2
4
×
3
5
×…×
n-1
n+1
=
1
n(n+1)

∴an+1=
1
(n+1)(n+2)
点评:本题主要考查由数列的递推公式an=Sn-Sn-1求把和的递推转化为项的递推,及由
an
an-1
=
n-1
n+1
利用迭代法求解数列的通项公式,求解中要注意抵消后剩余的项是:分子,分母各剩余两项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案