精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn , 且Tn= ,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.

【答案】
(1)解:设等差数列{an}的公差为d,

由a2=6,a3+a6=27.可得a1+d=6,2a1+7d=27,

解得a1=d=3,

即有an=a1+(n﹣1)d=3n


(2)解:Tn= = =

Tn+1=

=

可得T1<T2≤T3>T4>T5>…>Tn>…

即有T2=T3= ,取得最大值.

对于一切正整数n,总有Tn≤m成立,

则有m≥

即有m的取值范围是[ ,+∞)


【解析】(1)设等差数列{an}的公差为d,运用等差数列的通项公式,计算即可得到;(2)由等差数列的求和公式和数列的单调性,可得Tn的最大值,再由恒成立思想,即可得到m的范围.

【考点精析】本题主要考查了等差数列的前n项和公式和数列的前n项和的相关知识点,需要掌握前n项和公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,数列 的前n项和为Sn , 数列{bn}的通项公式为bn=n﹣8,则bnSn的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P( ,0),当α= 时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是(
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,且 =
(Ⅰ)求角B的大小;
(Ⅱ)点D满足 =2 ,且线段AD=3,求2a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为 ρsin( ﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点和上顶点分别为F1、F2、B,定义:△F1BF2为椭圆C的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点 是椭圆 的一个焦点,且C1上任意一点到它的两焦点的距离之和为4.
(1)若椭圆C2与椭圆C1相似,且C2与C1的相似比为2:1,求椭圆C2的方程;
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任意一点,若点Q是直线y=nx与抛物线 异于原点的交点,证明:点Q一定在双曲线4x2﹣4y2=1上;
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb , 是否存在正方形ABCD,(设其面积为S),使得A、C在直线l上,B、D在曲线Cb上?若存在,求出函数S=f(b)的解析式及定义域;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点(0,﹣2),F1 , F2分别是其左、右焦点,O为坐标原点,点P是椭圆上一点,PF1⊥x轴,且△OPF1的面积为
(1)求椭圆E的离心率和方程;
(2)设A,B是椭圆上两动点,若直线AB的斜率为 ,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案