【题目】如图,在平面直角坐标系中,已知分别是椭圆:()的左右焦点,点是椭圆上一点,且.若椭圆的内接四边形的边的延长线交于椭圆外一点,且点的横坐标为1,记直线的斜率分别为,.
(1)求椭圆的标准方程;
(2)若,求的值.
【答案】(1).(2)
【解析】
(1)求椭圆定义可知,点代入即可得出结果;
(2)设,,因为的延长线交于椭圆外一点,且点的横坐标为1,于是有,将直线与椭圆方程联立,结合韦达定理及弦长公式可求得,,根据已知条件化简即可得出结果.
(1),∴
点是椭圆上一点,代入方程:,∴,
∴椭圆的标准方程:
(2)设,
的延长线交于椭圆外一点,且点的横坐标为1,于是有 ①
②
于是:
代入②可得
同理
又,可得:
∴
法二:(1)由为椭圆的左右焦点,为上一点,
∴,∴,∴椭圆
将代入可得
∴椭圆的标准方程为
(2)设,由斜率分别为
则直线的方程分别为
将与联立,设
由韦达定理,
∴
同理可证
则由,得
从而
即
∴,∴
又为的内接四边形,∴,∴
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π].
(Ⅰ)若函数f(x)为偶函数,求tanθ的值;
(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年9月25日.阿里巴巴在杭州云栖大会上正式对外发布了含光800AI芯片,在业界标准的ResNet -50测试中,含光800推理性能达到78563lPS,比目前业界最好的AI芯片性能高4倍;能效比500 IPS/W,是第二名的3.3倍.在国内集成电路产业发展中,集成电路设计产业始终是国内集成电路产业中最具发展活力的领域,增长也最为迅速.如图是2014-2018年中国集成电路设计产业的销售额(亿元)及其增速(%)的统计图,则下面结论中正确的是( )
A.2014-2018年,中国集成电路设计产业的销售额逐年增加
B.2014-2017年,中国集成电路设计产业的销售额增速逐年下降
C.2018年中国集成电路设计产业的销售额的增长率比2015年的高
D.2018年与2014年相比,中国集成电路设计产业销售额的增长率约为110%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线E的方程为x2=2py(p>0),其焦点为F,过点M (0,4)的直线与抛物线相交于P、Q两点且△OPQ为以O为直角顶点的直角三角形.
(Ⅰ)求E的方程;
(Ⅱ)设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左、右焦点分别为F1、F2,过点F1作圆x2+y2=a2的切线交双曲线右支于点M,若tan∠F1MF2=2,又e为双曲线的离心率,则e2的值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.
(1)点M(x,y)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;
(2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为E,F,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数和函数,关于这两个函数图像的交点个数,下列四个结论:①当时,两个函数图像没有交点;②当时,两个函数图像恰有三个交点;③当时,两个函数图像恰有两个交点;④当时,两个函数图像恰有四个交点.正确结论的个数为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com