精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知分别是椭圆()的左右焦点,点是椭圆上一点,且.若椭圆的内接四边形的边的延长线交于椭圆外一点,且点的横坐标为1,记直线的斜率分别为.

1)求椭圆的标准方程;

2)若,求的值.

【答案】1.(2

【解析】

1)求椭圆定义可知,代入即可得出结果;

2)设,因为的延长线交于椭圆外一点,且点的横坐标为1,于是有,将直线与椭圆方程联立,结合韦达定理及弦长公式可求得,,根据已知条件化简即可得出结果.

1,

是椭圆上一点,代入方程:,∴

∴椭圆的标准方程:

2)设

的延长线交于椭圆外一点,且点的横坐标为1,于是有

于是:

代入②可得

同理

可得:

法二:(1)由为椭圆的左右焦点,上一点,

,∴,∴椭圆

代入可得

∴椭圆的标准方程为

2)设,由斜率分别为

则直线的方程分别为

联立,设

由韦达定理,

同理可证

则由,得

从而

,∴

的内接四边形,∴,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4[sin(θ+)]x2,θ∈[0,2π].

)若函数f(x)为偶函数,求tanθ的值;

)若f(x)在[,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019925.阿里巴巴在杭州云栖大会上正式对外发布了含光800AI芯片,在业界标准的ResNet -50测试中,含光800推理性能达到78563lPS,比目前业界最好的AI芯片性能高4;能效比500 IPS/W,是第二名的3.3.在国内集成电路产业发展中,集成电路设计产业始终是国内集成电路产业中最具发展活力的领域,增长也最为迅速.如图是2014-2018年中国集成电路设计产业的销售额(亿元)及其增速(%)的统计图,则下面结论中正确的是( )

A.2014-2018,中国集成电路设计产业的销售额逐年增加

B.2014-2017,中国集成电路设计产业的销售额增速逐年下降

C.2018年中国集成电路设计产业的销售额的增长率比2015年的高

D.2018年与2014年相比,中国集成电路设计产业销售额的增长率约为110%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线E的方程为x22pyp0),其焦点为F,过点M 04)的直线与抛物线相交于PQ两点且OPQ为以O为直角顶点的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为F1F2,过点F1作圆x2+y2a2的切线交双曲线右支于点M,若tanF1MF22,又e为双曲线的离心率,则e2的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.

1)点Mxy)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;

2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为EF,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为等边三角形,的中点.

1)求证:平面平面

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数和函数,关于这两个函数图像的交点个数,下列四个结论:①当时,两个函数图像没有交点;②当时,两个函数图像恰有三个交点;③当时,两个函数图像恰有两个交点;④当时,两个函数图像恰有四个交点.正确结论的个数为(

A.B.C.D.

查看答案和解析>>

同步练习册答案