精英家教网 > 高中数学 > 题目详情
8.已知直线l过点(1,0)且倾斜角为α,在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线M的方程为ρsin2θ+4cosθ=0.
(1)写出曲线M的直角坐标方程及直线l的参数方程;
(2)若直线l与曲线M只有一个公共点,求倾斜角α的值.

分析 (1)利用x=ρcosθ,y=ρsinθ,即可得出M的直角坐标方程;利用直线l过点(1,0)且倾斜角为α,可得直线l的参数方程;
(2)设直线方程为y=k(x-1),代入y2=-4x,可得k2x2-(2k2-4)x+k2=0,分类讨论,利用直线l与曲线M只有一个公共点,求倾斜角α的值.

解答 解:(1)x=ρcosθ,y=ρsinθ,
由ρsin2θ+4cosθ=0得ρ2sin2θ=-4ρcosθ.
∴y2=-4x即为曲线M的直角坐标方程; 
直线l过点(1,0)且倾斜角为α,故直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数);
(2)设直线方程为y=k(x-1),代入y2=-4x,可得k2x2-(2k2-4)x+k2=0
①k=0,y=0,满足题意,α=0;
②$\left\{\begin{array}{l}{k≠0}\\{(2{k}^{2}-4)^{2}-4{k}^{4}=0}\end{array}\right.$,∴k=±1,∴α=$\frac{π}{4}$或$\frac{3π}{4}$.

点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程,考查直线与抛物线的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,F是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点,点P在椭圆上,直线PF与以OF为直径的圆相交于点M(异于点F),若点M为PF的中点,且直线PF的斜率为$\sqrt{3}$,则椭圆的离心率为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}中,a4=4,a3+a8=5,则a7=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l过抛物线C:y2=4x的焦点F交抛物线C于A、B两点,则$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$的取值范围为(  )
A.{1}B.(0,1]C.[1,+∞)D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为(  )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
A.22B.23C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{\sqrt{1-x}}$+$\sqrt{x+3}$-1的定义域是(  )
A.(-1,3]B.(-1,3)C.[-3,1)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\root{3}{-27}$等于(  )
A.3B.-3C.±3D.-27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是等差数列,且a2+a3+a10+a11=48,则a5+a8等于(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a∈R,且a≠0).
(1)若函数f(x)在区间(2016,+∞)上单调递增,求实数a的取值范围;
(2)若在区间[1,e]上至少存在一点x0.使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案