【题目】在直角坐标系中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求直线l的直角坐标方程;
(2)已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为45°,若的最大值为6,求a的值.
科目:高中数学 来源: 题型:
【题目】万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,为坐标平面内动点,且成等差数列.
(1)求动点的轨迹方程;
(2)设点的轨迹为曲线,过点作直线交于两点(不与原点重合),是否存在轴上一定点,使得_________.若存在,求出定点,若不存在,说明理由.从“①作点关于轴的对称点,则三点共线;②”这两个条件中选一个,补充在上面的问题中并作答(注:如果选择两个条件分别作答,按第一个解答计分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com