精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和是Sn,满足Sn=2an-1.
(1)求数列的通项an及前n项和Sn
(2)若数列{bn}满足bn=
1log2(Sn+1)•log2(Sn+1+1)
(n∈N*)
,求数列{bn}的前n项和Tn
(3)若对任意的x∈R,恒有Tn<x2-ax+2成立,求实数a的取值范围.
分析:(1)、根据题中已知条件先求出数列{an}是首项为1,公比为2的等比数列,然后求出数列an的通项公式,根据等比数列前n项和的公式便可求出Sn的表达式;
(2)、将(1)中求得的Sn的表达式代入bn的表达式中即可求得bn的通项公式,然后即可求出数列{bn}的前n项和Tn的表达式;
(3)、将(2)中求得的Tn的表达式代入Tn<x2-ax+2,进一步推理即可得出x2-ax+1≥0在R上恒成立,即可求出a的取值范围.
解答:解:(1)当n=1时,S1=2a1-1,a1=1,
当n≥2时,Sn-1=2an-1-1
∴an=Sn-Sn-1=2an-2an-1
∴an=2an-1(3分)
∴数列{an}是首项为1,公比为2的等比数列.
∴an=2n-1(n∈N*
Sn=
1-2n
1-2
=2n-1(n∈N*)


(2)bn=
1
log2(Sn+1)•log2(Sn+1+1)
=
1
log22nlog22n+1
=
1
n(n+1)
(n∈N*)

Tn=
1
1×2
+
1
2×3
+
1
3×4
++
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
++
1
n
-
1
n+1
=
n
n+1
(n∈N*)


(3)由Tn<x2-ax+2恒成立,
n
n+1
x2-ax+2
恒成立,
1-
1
n+1
x2-ax+2
恒成立,
必须且只须满足1≤x2-ax+2恒成立,
即x2-ax+1≥0在R上恒成立
∴△=(-a)2-4×1≤0,
解得-2≤a≤2.
点评:本题主要考查了等比数列的基本性质以及数列与不等式的综合,考查了学生的计算能力和对数列与不等式的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案