精英家教网 > 高中数学 > 题目详情

【题目】如图,点是圆内的一个定点,点是圆上的任意一点,线段的垂直平分线和半径相交于点,当点在圆上运动时,点的轨迹为曲线.

(1)求曲线的方程;

(2)点 ,直线轴交于点,直线轴交于点,求的值.

【答案】(1) (2)

【解析】试题分析:

本题考查曲线方程的求法和直线与圆锥曲线的位置关系.(1)由条件根据定义法求解曲线方程.(2)设出直线的方程,然后根据根与系数的关系求得点的坐标.由点 共线可得点的横坐标,可得直线轴的交点纵坐标为,由此可得 计算后可得结果.

试题解析

(1)由题意得点的垂直平分线上,

所以

.

∴点的轨迹是以为焦点,长轴长为4的椭圆,

设椭圆的方程为,

.

所以曲线的方程为.

(2)由题设知直线的斜率存在.设直线的方程为

消去整理得

所以

所以

因为点 共线

所以

又直线轴的交点纵坐标为

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动点P到定点F(0,1)的距离比它到直线的距离小1,设动点P的轨迹为曲线C,过点F的直线交曲线C于AB两个不同的点,过点AB分别作曲线C的切线,且二者相交于点M

(Ⅰ)求曲线C的方程;

()求证:

(Ⅲ)△ABM的面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中是自然对数的底数, .

1)讨论函数的单调性;

(2)当函数有两个零点时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点

(Ⅰ)求证:

(Ⅱ)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,且,设动点满足

)求动点的轨迹的方程

若直线与曲线交于两点求三角形面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,曲线的极坐标方程为曲线的参数方程为为参数.

1)求曲线的直角坐标方程和曲线的普通方程;

(2)判断曲线与曲线的位置关系,若两曲线相交,求出两交点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下、左、右四个顶点分别为x轴正半轴上的某点满足.

(1)求椭圆的方程;

(2)设该椭圆的左、右焦点分别为,点在圆上,且在第一象限,过作圆的切线交椭圆于,求证:△的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB1AE2F是线段BC上一点,直线BC与平面ABD所成角为30°CE∥平面ADF.

(1)试确定F的位置;

(2)求三棱锥ACDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1中,E、F分别是ABAA1的中点.

求证:(1)E、C、D1、F四点共面;

(2)CE、D1F、DA三线共点.

查看答案和解析>>

同步练习册答案