精英家教网 > 高中数学 > 题目详情
14.如图,ABCD是正方形,SA⊥平面ABCD,BK⊥SC于点K,连接DK,求证:
(1)平面SBC⊥平面KBD;
(2)平面SBC不垂直于平面SDC.

分析 (1)连接AC,由已知推导出BD⊥平面SAC,从而SC⊥平面KBD,由此能证明平面SBC⊥平面KBD.
(2)假设平面SBC⊥平面SDC,由已知推导出AB⊥SB,这与∠SBA是Rt△SAB的一个锐角矛盾,故假设不成立,从而得到平面SBC不垂直于平面SDC.

解答 证明:(1)连接AC,∵四边形ABCD是正方形,
∴AC⊥BD.又SA⊥平面ABCD,∴SA⊥BD,
∴BD⊥平面SAC,∴SC⊥BD.
又∵SC⊥BK,∴SC⊥平面KBD.
又SC?平面SBC,∴平面SBC⊥平面KBD.
(2)假设平面SBC⊥平面SDC.
∵BK⊥SC,∴BK⊥平面SDC.
∵DC?平面SDC,∴BK⊥DC,
又AB∥CD,∴BK⊥AB.
∵ABCD是正方形,AB⊥BC,
∴AB⊥平面SBC,又SB?平面SBC,
∴AB⊥SB,这与∠SBA是Rt△SAB的一个锐角矛盾,故假设不成立.
∴原结论成立,即平面SBC不垂直于平面SDC.

点评 本题考查面面垂直的证明,考查平面不垂直的证明,是中档题,解题时要注意反证法的合理运用,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数φ(x)=x2+ax+b,f(x)=$\frac{φ(x)-ax}{x}$.
(1)当f(1)=f(4),函数F(x)=f(x)-k有且仅有一个零点x0,且x0>0时,求k的值;
(2)求证:存在x0∈[-1,1],使|φ(x0)|≥|a|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.0.73<1;  1.2-1<1.(用“<”或“>”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=4x-2x+1+1(x>0)的反函数为y=f-1(x),则f-1(9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π+1}{3}$B.$\frac{2π+3}{3}$C.$\frac{4π+1}{3}$D.$\frac{4π+3}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.把函数y=-2sin(x-$\frac{π}{3}$)的图象向左平移m(m>0)个单位,所得的图象关于y轴对称,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知瞭望塔BA的高度为40m,为测得古塔DC的高度,在B处望占塔的顶部,仰角是60°,在A处再次望古塔的顶部,仰角为45°.
(1)求古塔DC的高度;
(2)试确定在瞭望塔的某个位置(线段BA上)P,使得观察古塔DC的视角∠CPD最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆锥的高等于底面直径,则它的底面积与侧面积之比为(  )
A.1:2B.1:$\sqrt{3}$C.1:$\sqrt{5}$D.$\sqrt{3}$:2

查看答案和解析>>

同步练习册答案