精英家教网 > 高中数学 > 题目详情
4.函数f(x)的定义域为R,且f(-3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(-∞,-3).

分析 设F(x)=f(x)-(2x+7),则F′(x)=f′(x)-2,由对任意x∈R总有f′(x)>2,知F′(x)=f′(x)-2>0,所以F(x)=f(x)-2x-7在R上是增函数,由此能够求出结果.

解答 解:设F(x)=f(x)-(2x+7)=f(x)-2x-7,
则F′(x)=f′(x)-2,
∵f′(x)>2,
∴F′(x)=f′(x)-2>0,
∴F(x)=f(x)-2x-7在R上递增,
∵f(-3)=1,
∴F(-3)=f(-3)-2×(-3)-7=0,
∵f(x)<2x+7,
∴F(x)=f(x)-2x-7<0,
∴x<-3,
故答案为:(-∞,-3).

点评 本题考查利用导数研究函数的单调性的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知正数a,b,c满足2a-b+c=0,则$\frac{ac}{{b}^{2}}$的最大值为(  )
A.8B.2C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A时抛物线M:x2=2py(p>0)与圆N:(x+2)2+y2=r2在第二象限的一个公共点,满足点A到抛物线M准线的距离为r,若抛物线M上动点到其准线的距离与到点N的距离之和最小值为2r,则p=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象,如图所示,则f(2016)的值为$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F(-1,0),左顶点为A,上、下顶点分别为B,C.
(1)若直线BF经过AC中点M,求椭圆E的标准方程;
(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a=log0.65,b=2${\;}^{\frac{4}{5}}$,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将
△ABD沿BD折起,使面ABD⊥面BCD,连结AC,则下列命题正确的是(  )
A.面ABD⊥面ABCB.面ADC⊥面BDCC.面ABC⊥面BDCD.面ADC⊥面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上一点P到椭圆一个焦点的距离为2,则P到另一焦点的距离为(  )
A.3B.5C.7D.8

查看答案和解析>>

同步练习册答案