精英家教网 > 高中数学 > 题目详情
4.若二次函数y=ax2+bx+c(ac≠0)的图象的顶点坐标为$(-\frac{b}{2a},-\frac{1}{4a})$,与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于M(0,-4),则点(b,c)所在曲线为(  )
A.B.椭圆C.双曲线D.线段

分析 确定以线段PQ为直径的圆的圆心坐标,利用|CM|=|CQ|,及二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标,化简,即可求得点(b,c)所在曲线.

解答 解:由题意,以线段PQ为直径的圆的圆心坐标为C(-$\frac{b}{2a}$,0),则:
由|CM|=|CQ|,可得$\frac{{b}^{2}}{4{a}^{2}}$+16=$\frac{{b}^{2}-4ac}{4{a}^{2}}$,
∵二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(-$\frac{b}{2a}$,-$\frac{1}{4a}$),
∴$\frac{4ac-{b}^{2}}{4a}$=-$\frac{1}{4a}$,
∴b2-4ac=1,
∴b2+64a2=1,a=$\frac{{b}^{2}-1}{4c}$
∴${b}^{2}+64×\frac{({b}^{2}-1)^{2}}{16{c}^{2}}$=1
∴c2+4b2=4
∴b2+$\frac{{c}^{2}}{4}$=1
∴点(b,c)所在曲线为椭圆
故选:B.

点评 本题考查轨迹方程,考查学生的运算能力,解题的关键是建立等式|CM|=|CQ|,正确化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求满足下列函数的解析式.
(1)f(1+x)=4x+2;
(2)$f(\frac{1}{2}x)=2{x^2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,且a2+c2=b2+ac.
(1)若b=$\sqrt{3}$,sinC=2sinA,求c的值;
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,四棱锥P-ABCD底面是边长为2的正方形,侧面PAD是等边三角形,且侧面PAD⊥底面ABCD,则侧棱PC与底面ABCD夹角的正弦值为$\frac{{\sqrt{6}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解答下列问题
(1)计算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知函数f(x)=ax+lnx,则当a<0时,f(x)的单调增区间是(0,-$\frac{1}{a}$),f(x)的单调减区间是(-$\frac{1}{a}$,+∞).
(2)已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,a≠0,若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不等式组$\left\{\begin{array}{l}{x^2}+\sqrt{2}ax+5≥\frac{1}{3}\\{x^2}+\sqrt{2}ax+5≤\frac{7}{2}\end{array}\right.$有唯一解,则实数a=±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$($\overrightarrow{α}$≠$\overrightarrow{β}$)满足|$\overrightarrow{α}$|=$\sqrt{3}$且$\overrightarrow{α}$与$\overrightarrow{β}$-$\overrightarrow{α}$的夹角为150°,则|m$\overrightarrow{α}$+(1-m)$\overrightarrow{β}$|的取值范围是$[\frac{{\sqrt{3}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是(  )
A.三棱柱B.三棱台C.三棱锥D.四棱锥

查看答案和解析>>

同步练习册答案