精英家教网 > 高中数学 > 题目详情
3.数列{an}前n项的和Sn=n2+1,则a3=5,a5=9.

分析 直接利用an=Sn-Sn-1(n≥2)求解.

解答 解:∵数列{an}前n项的和Sn=n2+1,
∴${a}_{3}={S}_{3}-{S}_{2}={3}^{2}+1-{2}^{2}-1=5$;
${a}_{5}={S}_{5}-{S}_{4}={5}^{2}+1-{4}^{2}-1=9$.
故答案为:5;9.

点评 本题考查数列递推式,考查了由数列的前n项和求数列中的项,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.(文)不等式ax2+bx+2>0的解集为($-\frac{1}{2},\frac{1}{3}$),则ab的值为(  )
A.24B.-24C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tanα=$-\frac{4}{3}$,则$\frac{sinα+cosα}{sinα-cosα}$等于(  )
A.$\frac{1}{7}$B.$-\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法中正确的是(  )
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.若p:?x0∈R,x02-x0-1>0,则¬p:?x∈R,x2-x-1<0
C.若p∧q为假命题,则p,q均为假命题
D.“若$α=\frac{π}{6}$,则$sinα=\frac{1}{2}$”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3-3x.
(1)讨论f(x)的单调区间;
(2)若函数g(x)=f(x)-m在$[{-\frac{3}{2},3}]$上有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{\begin{array}{l}|lgx|({0<x<10})\\-\frac{1}{2}x+6({x≥10})\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),则abc的取值范围是(10,12).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.奇函数f(x)定义域是(t,2t+3),则t=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点与抛物线C2:y2=4x的焦点相同,记为F,设点M是两曲线在第一象限内的公共点,且|MF|=$\frac{5}{3}$,则M点的横坐标是$\frac{2}{3}$,a+b=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数y=lg$\frac{x}{100}$的图象给出三个命题:下述命题中正确命题的序号是(1),(2),(3).
(1)存在直线l1,函数y=lg$\frac{x}{100}$的图象与函数y=100•10x的图象关于直线l1对称;
(2)存在直线l2,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1$\frac{x}{100}$的图象关于直线l2对称;
(3)存在直线l3,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1x的图象关于直线l3对称.

查看答案和解析>>

同步练习册答案