精英家教网 > 高中数学 > 题目详情

【题目】中,角的对边分别为,且,若的面积为,则的最小值为( )

A.B.C.D.3

【答案】B

【解析】

试题由正弦定理,有,又2c·cosB2ab,得

2sinC·cosB2sin AsinB

ABCπ,得sin Asin(BC)

2sinC·cosB2sin(BC)sinB,即2sinB·cosCsinB0

0BπsinB0,得cosC=-

因为0Cπ,得C

△ABC的面积为Sab sinCab,即c3ab

由余弦定理,得c2a2b22ab cosC,化简,得a2b2ab9a2b2

∵a2b2≥2ab,当仅当a=b时取等号,

∴2abab≤9a2b2,即ab≥,故ab的最小值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,直线为平面内的动点,过点作直线的垂线,垂足为点,且.

(1)求动点的轨迹的方程;

(2)过点作两条互相垂直的直线分别交轨迹四点.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点为原点的抛物线C的焦点与椭圆的上焦点重合,且过点.

1)求椭圆的标准方程;

(2)若抛物线上不同两点AB作抛物线的切线,两切线的斜率,若记AB的中点的横坐标为mAB的弦长,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线lykx1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,AB为切点.

1)证明:直线AB恒过定点Q

2)试求PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设min{mn}表示mn二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为

A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过以下4个不同的点:.

1)求圆的标准方程;

2)先将圆向左平移个单位后,再将所有点的横坐标、纵坐标都伸长到原来的倍得到圆,若两个点分别在直线上,为圆上任意一点,且为常数),证明直线过圆的圆心,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),直线l的参数方程为t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,射线m

1)求Cl的极坐标方程;

2)设mCl分别交于异于原点的AB两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数,且,在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系取相同的单位长度)中,曲线的极坐标方程为,设直线经过定点,且与曲线交于两点.

(Ⅰ)求点的直角坐标及曲线的直角坐标方程;

(Ⅱ)求证:不论为何值时,为定值.

查看答案和解析>>

同步练习册答案