精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)求函数的极值.

【答案】(1)递减; 递增.

(2)见解析.

【解析】分析:(1)将代入函数中,求导得,令可得函数的单调递增区间,令可得函数的单调递减区间;(2)求导可得,对参数三种情况进行讨论,判断每种情况下的正负,进而可得函数的增减性,得其极值情况.

详解: (1)函数的定义域为其导数为

.

显然递增;

递减/span>于是

所以递减; 递增;

(2)(1) .

函数递增在递减所以

又当时,

①当时, ,此时;

因为时, 递增; 时, 递减;

所以无极小值;

②当时,,此时;

因为时,递减;时.递增;

所以无极大值;

③当时,

递增所以上有唯一零点.

易证: 所以

所以

递减所以上有唯一零点故:

递减;当递增;

递减;当递增;

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是(

A.先把高二年级的2000名学生编号:12000,再从编号为150的学生中随机抽取1名学生,其编号为,然后抽取编号为……的学生,这种抽样方法是系统抽样法.

B.一组数据的方差为,平均数为,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为.

C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1.

D.若一组数据13的平均数是2,则该组数据的方差是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面上一点,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上动点到点的距离与到直线的距离之比为,记动点的轨迹为曲线.

1)求曲线的方程;

2)设是曲线上的动点,直线的方程为.

①设直线与圆交于不同两点 ,求的取值范围;

②求与动直线恒相切的定椭圆的方程;并探究:若是曲线 上的动点,是否存在直线 恒相切的定曲线?若存在,直接写出曲线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,种类型的快餐每份进价为元,并以每份元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以元的价格作特价处理,且全部售完.

(1)若该代卖店每天定制种类型快餐,求种类型快餐当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;

(2)该代卖店记录了一个月天的种类型快餐日需求量(每天20:00之前销售数量)

日需求量

天数

(i)假设代卖店在这一个月内每天定制种类型快餐,求这一个月种类型快餐的日利润(单位:元)的平均数(精确到);

(ii)若代卖店每天定制种类型快餐,以天记录的日需求量的频率作为日需求量发生的概率,求种类型快餐当天的利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbnbnnbn1.

(1)求数列,的通项公式;

(2)设数列满足,数列的前n项和为,若不等式

对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线

1)求证:无论取何值,直线始终经过第一象限;

2)若直线轴正半轴交于点,与轴正半轴交于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且当时,的最小值为2

1)求的值,并求的单调递增区间.

2)若将函数的图象上的点的纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位长度,得到函数的图象,求方程在区间上所有根之和.

查看答案和解析>>

同步练习册答案