【题目】已知函数()的图像上存在点,函数的图像上存在点,且关于原点对称,则的取值范围是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知点为抛物线: 的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.
(1)求直线的方程;
(2)求的面积范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩(假设考试成绩均在[65,90)内)分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90).得到频率分布直方图如图C34.
(1)求测试成绩在[80,85)内的频率;
(2)从第三、四、五组学生中用分层抽样的方法抽取6名学生组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名学生中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有1名学生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知两点, ,动点满足,线段的中垂线交线段于点.
(1)求点的轨迹的方程;
(2)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆左右焦点为,左顶点为A(-2.0),上顶点为B,且∠=.
(1)求椭圆C的方程;
(2)探究轴上是否存在一定点P,过点P的任意直线与椭圆交于M、N不同的两点,M、N不与点A重合,使得 为定值,若存在,求出点P;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为抛物线: 的焦点,过点作两条互相垂直的直线,直线交于不同的两点,直线交于不同的两点,记直线的斜率为.
(1)求的取值范围;
(2)设线段的中点分别为点,求证: 为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,以线段为直径的圆内切于圆,记点的轨迹为.
(1)求曲线的方程;
(2)若为曲线上的两点,记, ,且,试问的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com