精英家教网 > 高中数学 > 题目详情

【题目】如图,P是双曲线 (a>0,b>0,xy≠0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=|NF1|=…=a。类似地:P是椭圆 (a>b>0,xy≠0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且,则|OM|的取值范围是________.

【答案】0<|OM|<c.

【解析】延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,

得|OM|=|NF1|=(|PF1|-|PF2|),∵|PF1|+|PF2|=2a,∴|OM|=a-|PF2|,

a-c≤|PF2|≤a+c,∵P、F1、F2三点不共线∴0<a-|PF2|<c,∴0<|OM|<c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;

(2)写出函数f(x)(x∈R)的值域;
(3)写出函数f(x)(x∈R)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是 , 若S、A、B、C都在同一球面上,则该球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的各项均为正数,且Sn= + +…+ ,S2= ,S3= .设[x]表示不大于x的最大整数(如[2.10]=2,[0.9]=0).
(1)试求数列{an}的通项;
(2)求T=[log21]+[log22]+[log23]+…+[log2 ﹣1)]+[log2( )]关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=ax在[0,1]上的最大值与最小值的差为 ,则实数a的值为( )
A.
B.
C.

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的参数方程为(θ是参数),直线l的极坐标方程为(ρ∈R)
(Ⅰ)求C的普通方程与极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P ABCD中,底面ABCD为平行四边形, PA⊥平面ABCDEPD的中点.

证明:PB平面AEC

AD2 ,求三棱锥的体积

查看答案和解析>>

同步练习册答案