【题目】已知集合,,.
(1)命题p:“,都有”,若命题p为真命题,求a的值;
(2)若“”是“”的必要条件,求m的取值范围.
【答案】(1)2或3 (2)或
【解析】
(1)先求出集合A,若p为真命题,则有,方程的根有两种可能,两根相同,两根不同,由此可得a的值;(2)由题知“”能推出“”,从而,集合A已知,则集合C有以下可能:,,或C中只含有一个元素,由此可得m的范围.
解:(1)由题意得,∵命题p为真命题,
∴.
又∵,
由,可知B有两种可能,
①若,则,解得;
②若,则,解得.
因此a的值为2或3.
(2)∵“”是“”的必要条件,
∴“”能推出“”,从而,
因此集合C有四种可能:
①,此时解得;
②,此时此时方程组无实数解,m的值不存在;
③,此时方程组无实数解,m的值不存在;
④,此时,解得.
综上可知,m的取值范围为或.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,且与轴,轴交于两点.
(i)若,求的值;
(ii)若点的坐标为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, ,,,,,点在上,且,将沿折起,使得平面平面 (如图), 为中点.
(1)求证: 平面;
(2)在线段上是否存在点,使得平面?若存在,求的值,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省每年损失耕地20万亩,每亩耕地价值24000元,为了减小耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,t变动的范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上为单调递增函数,求的取值范围;
(3)当 时,函数 的图象与轴交于两点 ,且 ,又是的导函数.若正常数 满足条件.证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数在上是增函数,且在定义域上是偶函数.
(1)求p的值,并写出相应的函数的解析式.
(2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com