精英家教网 > 高中数学 > 题目详情

【题目】已知集合

1)命题p,都有,若命题p为真命题,求a的值;

2)若的必要条件,求m的取值范围.

【答案】123 2

【解析】

1)先求出集合A,若p为真命题,则有,方程的根有两种可能,两根相同,两根不同,由此可得a的值;(2)由题知能推出,从而,集合A已知,则集合C有以下可能:,或C中只含有一个元素,由此可得m的范围.

:1)由题意得,∵命题p为真命题,

又∵

,可知B有两种可能,

①若,则,解得

②若,则,解得

因此a的值为23

2)∵的必要条件,

能推出,从而

因此集合C有四种可能:

,此时解得

,此时此时方程组无实数解,m的值不存在;

此时方程组无实数解,m的值不存在;

,此时,解得

综上可知,m的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2.

(1)求椭圆的方程;

(2)已知直线与椭圆交于两点,且与轴,轴交于两点.

(i)若,求的值;

(ii)若点的坐标为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,,,,,点上,且,将沿折起,使得平面平面 (如图), 中点.

(1)求证: 平面;

(2)在线段上是否存在点,使得平面?若存在,求的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省每年损失耕地20万亩,每亩耕地价值24000元,为了减小耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,t变动的范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当 时,函数 的图象与轴交于两点 ,且 ,又的导函数.若正常数 满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调性;

(2)当时,若函数的极值为e,求的值;

(3)当时,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上是增函数,且在定义域上是偶函数.

1)求p的值,并写出相应的函数的解析式.

2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案