【题目】在平面直角坐标系中,为坐标原点.定义点的“友好点”为:,现有下列命题:
①若点的“友好点”是点,则点的“友好点”一定是点.
②单位圆上的点的“友好点”一定在单位圆上.
③若点的“友好点”还是点,则点一定在单位圆上.
④对任意点,它的“友好点”是点,则 的取值集合是 .
其中的真命题是_____.
科目:高中数学 来源: 题型:
【题目】椭圆(a>0,b>0)的左右焦点分别为F1,F2,与y轴正半轴交于点B,若△BF1F2为等腰直角三角形,且直线BF1被圆x2+y2=b2所截得的弦长为2,
(1)求椭圆的方程;
(2)直线l:y=kx+m与椭圆交于点A,C,线段AC的中点为M,射线MO与椭圆交于点P,点O为△PAC的重心,求证:△PAC的面积S为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)设点,为曲线上的动点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求证:面BCE⊥面DCE;
(2)求二面角C﹣BE﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.
(1)求证:;
(2)设为的中点,点在线段上,若直线平面,求的长;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线上任意一点向轴作垂线段垂足为,点是线段上的一点,且满足.
(1)求点的轨迹的方程;
(2)设直线与轨迹交于两点,点为轨迹上异于的任意一点,直线分别与直线交于两点.问:轴正半轴上是否存在定点使得以为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个五位自然数数称为“跳跃数”,如果同时有或(例如13284,40329都是“跳跃数”,而12345,54371,94333都不是“跳跃数”),则由1,2,3,4,5组成没有重复数字且1,4不相邻的“跳跃数”共有_____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有唯一一个整数,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com