精英家教网 > 高中数学 > 题目详情
2.已知|cosα|≥$\frac{1}{2}$,则$\sqrt{1+sinα}+\sqrt{1-sinα}$的最小值是$\sqrt{3}$.

分析 设x=$\sqrt{1+sinα}$+$\sqrt{1-sinα}$,两边平方后利用完全平方公式及同角三角函数间基本关系化简,整理后根据|cosα|的范围求出所求式子最小值即可.

解答 解:设x=$\sqrt{1+sinα}$+$\sqrt{1-sinα}$,
两边平方得:x2=2+2$\sqrt{(1+sinα)(1-sinα)}$=2+2$\sqrt{1-si{n}^{2}α}$=2+2$\sqrt{co{s}^{2}α}$=2+2|cosα|,
∵|cosα|≥$\frac{1}{2}$,
∴1≤2|cosα|≤2,即3≤2+2|cosα|≤4,
∴2+2|cosα|的最小值为3,即x2的最小值为3,
则$\sqrt{1+sinα}$+$\sqrt{1-sinα}$的最小值为$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=$\sqrt{2}$AD,AD=$\sqrt{2}$A1B1,∠BAD=45°.
(1)证明:BD⊥AA1
(2)证明:AA1∥平面BC1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设0<θ<π,若cosθ+isinθ=$\frac{1+\sqrt{3}i}{-2i}$(i为虚数单位),则θ的值为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=0”是“函数y=(x+a)2是偶函数”的(  )
A.充分但不必要条件B.必要但不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知平面α∥平面β,AB与CD是两条异面直线且AB?α,CD?β,如果E、F、G分别是AC、CB、BD的中点.求证:平面EFG∥α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
(3)若M是PC的中点,求三棱锥M-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=2sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)+sin2x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用一根长7.2米的木料,做成“日”字形的窗户框,要使窗户面积不超过1.8平方米,且木料无剩余,求窗户宽的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,A=30°,2$\overrightarrow{AB}•\overrightarrow{AC}$=3$\overrightarrow{BC}$2,则△ABC的最大角的余弦值为$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案