【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________。
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,点为上一动点,且,.
(1)试证明不论点在何位置,都有;
(2)求的最小值;
(3)设平面与平面的交线为,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,若曲线的极坐标系方程为
,直线的参数方程为为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)设点直线与曲线交于两点, 求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点P为平面上的动点,过点P作直线l:的垂线,垂足为Q,且.
Ⅰ求动点P的轨迹C的方程;
Ⅱ设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同的两点,且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,的四个顶点围成的四边形的面积为.
(1)求的方程;
(2)过的左焦点作直线与交于、两点,线段的中点为,直线(为坐标原点)与直线相交于点,是否存在直线使得为等腰直角三角形,若存在,求出的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(ax2-2x)ex,其中a≥0.
(1)当a=时,求f(x)的极值点;
(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系平面上的一列点,,…,,记为,若由构成的数列满足,,其中为与轴正方向相同的单位向量,则称为点列.
(1)判断,,,…,,是否为点列,并说明理由;
(2)若为点列.且点在点的右上方,(即)任取其中连续三点,,判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若为点列,正整数,满足.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解,两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;
(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com