精英家教网 > 高中数学 > 题目详情
计算:
1
0.25
+(
1
27
)
-
1
3
+
lg23-lg9+1
-lg(
1
3
).
考点:对数的运算性质
专题:计算题
分析:结合指数运算和对数运算的性质进行化简求值即可.
解答: 解:
1
0.25
+(
1
27
)
-
1
3
+
lg23-lg9+1
-lg(
1
3

=2+[(
1
3
3] -
1
3
+
(lg3-1)2
+lg3
=2+3+1-lg3+lg3
=6.
点评:本题主要考查指数运算和开方运算以及对数运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥的底面边长是4cm,侧棱长是2
3
cm,求它的高与斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在x∈[0,+∞﹚上是增函数,且f(
1
2
)=0,求不等式f(logax)>0(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

若α是第四象限的角,则
α
4
是第
 
象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2sin2x+1(x∈R).
(1)求函数f(x)的最小正周期及在区间[0,
π
2
]上的最大值和最小值;
(2)若f(x0)=
6
5
,x0∈[
π
4
π
2
],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|x|(1-x)的单减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
xm2+m+1
(m∈N*)的定义域是
 
,奇偶性为
 
,单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωxcosωx+cos2ωx+1(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及f(x)的单调递增区间;
(Ⅱ)求f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
2x,x≤0
,若函数g(x)=f(x)-kx有零点,则实数k的取值范围是(  )
A、(-∞,+∞)
B、[
1
eln2
,+∞)
C、(-∞,
1
eln2
]
D、(-∞,1)

查看答案和解析>>

同步练习册答案