精英家教网 > 高中数学 > 题目详情
(选做题)设函数f(x)=|x+1|+|x-a|.
(Ⅰ)若a=2,解不等式f(x)≥5;
(Ⅱ)如果?x∈R,f(x)≥3,求a的取值范围.
分析:(I)当a=2,不等式即|x+1|+|x-2|≥5,根据绝对值的意义可得当x≤-2或x≥3时,|x+1|+|x-2|≥5成立,由此求得不等式的解集.
(II)若a=-1,f(x)=2|x+1|,不满足题设条件.若a<-1,求得f(x)的最小值等于-1-a,若a>-1,求得f(x)的最小值等于 1+a,根据f(x)≥3的充要条件是|a+1|≥3,求出a的取值范围.
解答:解:(I)当a=2,f(x)=|x+1|+|x-2|,不等式f(x)≥5即|x+1|+|x-2|≥5.
而|x+1|+|x-2|表示数轴上的x对应点到-1、2对应点的距离之和,且-2和3对应点到-1、2对应点的距离之和正好等于5,
故当x≤-2或x≥3时,|x+1|+|x-2|≥5成立.
综上,不等式的解集为{x|x≤-2或x≥3}.(5分)
(II)若a=-1,f(x)=2|x+1|,不满足题设条件.
若a<-1,f(x)=
-2x+a-1 ,  x≤a
-1-a  ,  a<x<-1
2x+1-a  , x≥a
,f(x)的最小值等于-1-a.
若a>-1,
-2x+a-1 ,  x≤-1
1+a  ,  a<x<-1
2x+1-a  , x≥a
,f(x)的最小值等于 1+a.
所以?x∈R,f(x)≥3的充要条件是|a+1|≥3,故有a≤-4,或 a≥2,
从而a的取值范围是(-∞,-4]∪[2,+∞).(10分)
点评:本题主要考查绝对值的意义,带有绝对值的函数,函数最值及其几何意义,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,定点A(2,π),动点B在直线ρsin(θ+
π
4
)=
2
2
上运动,则线段AB的最精英家教网短长度为
 

(不等式选讲选做题)设函数f(x)=|x-1|+|x-2|,则f(x)的最小值为
 

(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

①在极坐标系中,点A(2,-
π
3
)到直线l:ρcos(θ-
π
6
)=1
的距离为
1
1

②(不等式选讲选做题) 设函数f(x)=|x-2|+x,g(x)=|x+1|,则g(x)<f(x)成立时x的取值范围
(-3,1)∪(3,+∞)
(-3,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲选做题)设函数f(x)=|x-a|-2,若不等式|f(x)|<1的解集为(-2,0)∪(2,4),则实数a=
1
1

B.(几何证明选讲选做题)如右图,已知PB是圆O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC=
110°
110°

C.(坐标系与参数方程)极坐标系中,直线l的极坐标方程为ρsin(θ+
π
6
)=2,则极点在直线l上的射影的极坐标是
(2,
π
3
(2,
π
3

查看答案和解析>>

同步练习册答案