精英家教网 > 高中数学 > 题目详情

【题目】给出下列条件:①焦点在轴上;②焦点在轴上;③抛物线上横坐标为的点到其焦点的距离等于;④抛物线的准线方程是.

1)对于顶点在原点的抛物线:从以上四个条件中选出两个适当的条件,使得抛物线的方程是,并说明理由;

2)过点的任意一条直线交于不同两点,试探究是否总有?请说明理由.

【答案】(1)选择条件①③;详见解析(2)总有,证明见解析

【解析】

1)通过焦点位置可判断条件①适合,条件②不适合,通过准线方程,可判断条件④不适合,利用焦半径公式可判断条件③适合;

2)假设总有,设直线的方程为,联立,利用韦达定理计算可得结果.

解:(1)因为抛物线的焦点轴上,所以条件①适合,条件②不适合.

又因为抛物线的准线方程为:

所以条件④不适合题意

当选择条件③时,

此时适合题意

故选择条件①③时,可得抛物线的方程是

2)假设总有

由题意得直线的斜率不为

设直线的方程为

所以恒成立,

所以

所以

综上所述,无论如何变化,总有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在区间上任取一个数记为a,在区间上任取一个数记为b

a,求直线的斜率为的概率;

a,求直线的斜率为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,函数在区间上的最大值是2,则______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,为线段的中点,为线段上的一点.

(1)证明:平面平面.

(2)若,二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为坐标原点,为椭圆上任意一点,分别为椭圆的左、右焦点,且依次成等比数列,其离心率为.过点的动直线与椭圆相交于两点.

1)求椭圆的标准方程;

2)当时,求直线的方程;

3)在平面直角坐标系中,若存在与点不同的点,使得成立,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,为边的中点.将△沿翻折,得到四棱锥.设线段的中点为,在翻折过程中,有下列三个命题:

总有平面

三棱锥体积的最大值为

存在某个位置,使所成的角为

其中正确的命题是____.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日A, B, C三个城市18个销售点的小麦价格如下表:

销售点序号

所属城市

小麦价格(元/吨)

销售点序号

所属城市

小麦价格(元/吨)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5个销售点小麦价格的中位数

(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率

(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

同步练习册答案