精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.
分析:(1)以A为原点,AB所在直线为x轴,建立平面直角坐标系,求出动点M的轨迹方程,即可求出围成区域的面积;
(2)求出直线AC,DF的方程,可得G的坐标,计算kEG•kDF=-1,即可得到结论.
解答:(1)解:以A为原点,AB所在直线为x轴,建立平面直角坐标系,则A(0,0),B(3,0),C(3,1),D(0,1),E(1,0),F(2,0).…(1分)
设M(x,y),由题意知|MD|=2|MC|…(2分)
x2+(y-1)2
=2
(x-3)2+(y-1)2
…(3分)
两边平方化简得:即(x-4)2+(y-1)2=4…(5分)
即动点M的轨迹为圆心(4,1),半径为2的圆,
∴动点M的轨迹围成区域的面积为4π…(6分)
(2)证明:由A(0,0).C(3,1)知直线AC的方程为:x-3y=0,…(7分)
由D(0,1).F(2,0)知直线DF的方程为:x+2y-2=0,…(8分)
x-3y=0
x+2y-2=0
x=
6
5
y=
2
5
,故点G点的坐标为(
6
5
2
5
)
.…(10分)
又点E的坐标为(1,0),故kEG=2,kDF=-
1
2
   …(12分)
所以kEG•kDF=-1,即证得:EG⊥DF    …(13分)
点评:本题考查轨迹方程,考查直线方程的求解,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=2BC,P,Q分别为线段AB,CD的中点,EP⊥平面ABCD.
(1) 求证:AQ∥平面CEP;
(2) 求证:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM∥平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=
12
BC,E为AD的中点,将△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求证:CE⊥AB;
(2)在线段BC上找一点F,使DF∥平面ABE.

查看答案和解析>>

同步练习册答案