精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1,x∈[1,2]
x-1,x∈(2,3]
,对任意的a(a∈R),记u(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},求出u(a)的最小值.
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:先求出g(x)=f(x)-ax,再分类求出函数的最大值与最小值,可得分段函数,即可求得u(a)的最小值.
解答: 解:由题意,g(x)=f(x)-ax=
1-ax,1≤x≤2
(1-a)x-1,2<x≤3

∵1≤x≤2时,g(x)=1-ax,函数单调递减,∴g(x)∈[1-2a,1-a]
2<x≤3时,g(x)=(1-a)x-1,函数单调递增,∴g(x)∈(1-2a,2-3a]
若1-a<2-3a,即a<
1
2
时,g(x)max=2-3a;
若1-a≥2-3a,即a≥
1
2
时,g(x)max=1-a;
∴函数g(x)的最大值与最小值的差为u(a)=
1-a,a<
1
2
a,a≥
1
2

∴u(a)的最小值是
1
2
点评:本题考查函数的最值,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=n2+2n
(1)求证:{an}是等差数列
(2)求满足100<an<200的{an}中的所有项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明:对?n∈N*,en
1
2
n2+n+1;
(2)已知数列{an}中,a1=1,an+1=ean-an-1,求证:0<an+1<an

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,2a+2,3a+3成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx.
(1)若直线y=
1
2
x+m是曲线y=f(x)的切线,求m的值;
(2)若直线y=ax+b是曲线y=f(x)的切线,求ab的最大值;
(3)设A(x1,y1),B(x2,y2),C(x3,y3),是曲线y=f(x)上相异三点,其中0<x1<x2<x3,求证:
f(x2)-f(x1)
x2-x1
f(x3)-f(x2)
x3-x2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是(  )
A、[
4
2
-5
2
4
2
+5
2
]
B、[2
2
-2,2
2
+2]
C、[
3-2
2
2
3+2
2
2
]
D、[3
2
-2,3
2
+2]

查看答案和解析>>

科目:高中数学 来源: 题型:

把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的放法有(  )
A、36种B、45种
C、54种D、84种

查看答案和解析>>

科目:高中数学 来源: 题型:

一容器的三视图(正视图是一正六边形)如图,现加入溶液,记溶液液面与容器底面的距离为t,溶液体积为V(t),则函数V(t)的导函数V′(t)的大致图形是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=min{2
x
,|x-2|},其中min{a,b}=
a,a≤b
b,a>b
,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3,则x1•x2•x3最大值为
 

查看答案和解析>>

同步练习册答案