精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,BB1=BC.
(1)求证:平面DA1C1∥平面B1AC;
(2)求证:B1C⊥BD1
考点:平面与平面平行的判定
专题:空间位置关系与距离
分析:(1)充分利用已知长方体的性质,结合面面平行的判定定理,只要判断DA1∥平面B1AC和A1C1∥平面B1AC即可;
(2)只要证明B1C⊥平面BC1D1,利用线面垂直的性质得到所证.
解答: 证明:(1)∵四边形A1B1CD为平行四边形,∴DA1∥CB1…(1分)
∵CB1?平面B1AC,DA1?平面B1AC,∴DA1∥平面B1AC…(2分)
∵四边形A1C1CA为平行四边形,∴A1C1∥CA…(3分)
∵CA?平面B1AC,A1C1?平面B1AC∴A1C1∥平面B1AC…(4分)
∵DA1,A1C1是平面DA1C1内的两条相交直线 …(5分)
∴平面DA1C1∥平面B1AC…(6分)
(2)连接BC1,∵BB1=BC,∴在正方形BCC1B1中,B1C⊥BC1…(7分)
∵D1C1⊥平面BCC1B1∴B1C⊥D1C1…(9分)
∵BC1,D1C1是平面BC1D1内的两条相交直线
∴B1C⊥平面BC1D1…(11分)
∵BD1?平面BC1D1
∴B1C⊥BD1…(12分)
点评:本题考查了长方体中面面平行的判定和线线垂直的判定,关键是准确利用长方体的性质结合面面平行的判定定理解答,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lg
1-x
1+x
,且f(x)+f(y)=f(z),则z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(1)求证:直线DE与平面ABC不平行;
(2)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=
7
7
,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是棱长为a的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:
①有12个顶点;②有24条棱;③有12个面;④表面积为3a2;⑤体积为
5
6
a3
其中正确的结论是(  )
A、①③④B、①②⑤
C、②③⑤D、②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1,x=-
2
3
时,都取得极值.
(1)求a、b的值;
(2)若对x∈[-1,2],有f(x)<
1
c
恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,甲、乙、丙是三个空间立体图形的三视图,甲、乙、丙对应的标号正确的是(  )
①长方体  ②圆锥    ③三棱锥    ④圆柱.
A、③②④B、②①③
C、①②③D、④③②

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(Ⅰ)若BD=1,求三棱锥A-BCD的体积;
(Ⅱ)证明:平面ADB⊥平面BDC;
(Ⅲ)设E为BC的中点,求AE与DB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中正确的个数是(  )
①在△ABC中,若acosB=bcosA,则△ABC为等腰三角形
②若等差数列的通项公式为an=4n-21,则S5为最小值;
③当0<x<2时,函数f(x)=x(4-2x)的最大值为2
④垂直于同一个平面的两个平面互相平行.
A、.1B、2C、.3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所
示,给出关于该同学数学成绩的以下说法:
①中位数为83;   ②众数为83;
③平均数为85;   ④极差为12.
其中,正确说法的序号是(  )
A、①②B、②③C、③④D、②④

查看答案和解析>>

同步练习册答案