精英家教网 > 高中数学 > 题目详情
13.已知a>0,b>0,c>0,则$\frac{{ab+2ac+3\sqrt{2}bc}}{{{a^2}+{b^2}+4{c^2}}}$的最大值是$\sqrt{2}$.

分析 a2+b2+4c2=($\frac{1}{2}$a2+$\frac{1}{2}$a2)+($\frac{1}{4}$b2+$\frac{3}{4}$b2)+(c2+3c2),调整,利用基本不等式,即可得出结论.

解答 解:设a2+b2+4c2=($\frac{1}{2}$a2+$\frac{1}{2}$a2)+($\frac{1}{4}$b2+$\frac{3}{4}$b2)+(c2+3c2
=($\frac{1}{2}$a2+$\frac{1}{4}$b2)+($\frac{1}{2}$a2+c2)+($\frac{3}{4}$b2+3c2
≥$\frac{1}{\sqrt{2}}$ab+$\sqrt{2}$ac+3bc
∴ab+2ac+3$\sqrt{2}$bc≤$\sqrt{2}$(a2+b2+4c2),
∴$\frac{{ab+2ac+3\sqrt{2}bc}}{{{a^2}+{b^2}+4{c^2}}}$≤$\sqrt{2}$
当且仅当a=$\frac{\sqrt{5}}{5}$,b=2c=$\frac{\sqrt{10}}{5}$时,等号成立.
∴$\frac{{ab+2ac+3\sqrt{2}bc}}{{{a^2}+{b^2}+4{c^2}}}$的最大值是$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查重要不等式的运用:求最值,正确变形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在直角坐标系中,已知曲线C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),若以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=2cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)等于(  )
A.-1B.-eC.1D.-4e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数
(1)求函数f(x)的单调区间
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.极坐标方程ρ=2cosθ表示的圆的半径是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)=x2-lnx2,若α∈(0,π),且f(sinα)>f(cosα),则α的取值范围为(  )
A.(0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π)B.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)C.(0,$\frac{π}{4}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,则m9+n9=(  )
A.29B.47C.76D.123

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l的方程为x-y+2=0,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)判断直线l与曲线C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线l过点(1,2)且与直线2x-3y-1=0平行,则直线l的方程为2x-3y+4=0.

查看答案和解析>>

同步练习册答案