精英家教网 > 高中数学 > 题目详情
10.下列各图是正方体和正三棱柱(两底面为正三角形的直棱柱),G、N、M、H分别是顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有③.

分析 根据已知中的图形,结合棱柱的几何特征及异面直线的判定定理,逐一分析直线GH、MN的位置关系,可得答案.

解答 解:①中GH∥MN,GH=$\frac{1}{2}$MN,故不满足条件;
②中G、N、M、H四点在如图所示的平面中,

故不满足条件;
③中,GH?左侧面,MN∩左侧面=N,N∉GH,
故直线GH、MN是异面直线,
④中,GH∥MN,故不满足条件,
故答案为:③.

点评 本题考查的知识点是棱柱的几何特征及异面直线的判定定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an},Sn表示前n项和,若a3+a9>0,S9<0,则S1,S2…Sn中最小的是S5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=DC=1,以D为圆心,DC为半径,作弧和AD交于点E,点P为劣弧CE上的动点,如图所示.
(1)求|$\overrightarrow{DA}+\overrightarrow{DC}$|;
(2)求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在直角坐标平面xOy内,一条光线从点(2,4)射出,经直线x+y-1=0反射后,经过点(3,2),则反射光线的方程为x-26y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程|x|+|y|=1表示的曲线是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若第一象限内的点A(x、y)落在经过点(6,-2)且斜率是-$\frac{2}{3}$的直线上,则log${\;}_{\frac{3}{2}}$x+log${\;}_{\frac{3}{2}}$y有(  )
A.最大值1B.最大值$\frac{3}{2}$C.最小值$\frac{3}{2}$D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=x•|x-1|+m
(1)设函数g(x)=(2-m)x+3m,若方程f(x)=g(x)在(0,1]上有且仅有一个实根,求实数m的取值范围;
(2)当m>1时,求函数y=f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对定义在[0,1]上的函数f(x),如果同时满足以下三个条件:
①对任意x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,有f(x1+x2)≥f(x1)+f(x2)成立.
则称函数f(x)为理想函数.
(1)判断g(x)=2x-1(x∈[0,1])是否为理想函数,并说明理由;
(2)若f(x)为理想函数,求f(x)的最小值和最大值;
(3)若f(x)为理想函数,假设存在x0∈[0,1]满足f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x+$\frac{1}{x}$
(1)判断函数f(x)的奇偶性;
(2)用函数单调性定义证明:f(x)在(0,1)上是减函数.

查看答案和解析>>

同步练习册答案