精英家教网 > 高中数学 > 题目详情
已知椭圆C:
(1)已知椭圆的长轴是焦距的2倍,右焦点坐标为F(1,0),写出椭圆C的方程;
(2)设K是(1)中所的椭圆上的动点,点O是坐标原点,求线段KO的中点B的轨迹方程;
(3)设点P是(1)中椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.
【答案】分析:(1)2a=2(2c),c=1,a2=4b2=3,由此能求出椭圆C的方程.
(2)设KO的中点为B(x,y),则点K(2x,2y),把K的坐标代入椭圆中,得.由此能求出线段KF1的中点B的轨迹方程.
(3)过原点的直线L与椭圆相交的两点M,N关于坐标原点对称,设M(x,y)N(-x,-y),p(x,y).M,N,P在椭圆上,应满足椭圆方程,由此能够证明kPM•KPN的值与点P的位置无关,同时与直线L无关.
解答:解:(1)2a=2(2c),(1分)
c=1,(2分)
a2=4b2=3,(3分)
椭圆C的方程为:.(4分)
(2)设KO的中点为B(x,y)则点K(2x,2y),(6分)
把K的坐标代入椭圆中,
(8分)
线段KF1的中点B的轨迹方程为.(10分)
(3)过原点的直线L与椭圆相交的两点M,N关于坐标原点对称
设M(x,y)N(-x,-y),p(x,y)(11分)
M,N,P在椭圆上,应满足椭圆方程,
,(12分)
,(13分)
kPM•KPN==.(15分)
故:kPM•KPN的值与点P的位置无关,同时与直线L无关.(16分)
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)
的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c)

(1)求椭圆的离心率e的取值范围;
(2)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A,B两点,若OA⊥OB,求直线l被圆F2截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,且倾斜角为60°的直线l过点(0,-2
3
)
和椭圆C的右焦点F.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若已知D(3,0),点M,N是椭圆C上不重合的两点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆C与椭圆Γ:
x2
8
+
y2
4
=1
相似,且椭圆C的一个短轴端点是抛物线y=
1
4
x2
的焦点.
(Ⅰ)试求椭圆C的标准方程;
(Ⅱ)设椭圆E的中心在原点,对称轴在坐标轴上,直线l:y=kx+t(k≠0,t≠0)与椭圆C交于A,B两点,且与椭圆E交于H,K两点.若线段AB与线段HK的中点重合,试判断椭圆C与椭圆E是否为相似椭圆?并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
1
2
,右焦点为F(1,0).
(I)求椭圆C的方程;
(II)求经过点A(4,0)且与椭圆C相切的直线方程;
(III)设P为椭圆C上一动点,以PF为直径的动圆内切于一个定圆E.求定圆E的方程.

查看答案和解析>>

同步练习册答案