精英家教网 > 高中数学 > 题目详情
10.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

分析 (1)先求出第四小组分数在[70,80)内的频率,由此能求出第四个小矩形的高.
(2)由题意求出60分以上的各组频率和,从而得到这次考试的及格率,由频率分布直方图能求出本次考试中的平均分.
(3)由已知可得C组共有学生人,从B,C两组共5人中选两人参加科普知识竞赛,设5人分别为B1,B2,C1,C2,C3,利用列举法能求出这两个学生都来自C组的概率.

解答 解:(1)第四小组分数在[70,80)内的频率为:
1-(0.005+0.01+0.015+0.015+0.025)×10=0.30,
∴第四个小矩形的高为:$\frac{0.30}{10}$=0.03 …(4分)
(2)由题意60分以上的各组频率和为:(0.015+0.03+0.025+0.005)×10=0.75,
故这次考试的及格率约为75%,…(6分)
由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,
得本次考试中的平均分约为71:…(8分)
(3)由已知可得C组共有学生60×10×0.005=3人,
则从B,C两组共5人中选两人参加科普知识竞赛,设5人分别为B1,B2,C1,C2,C3
共有(B1,B2),(B1,C1),(B1,C2),(B1,C3),(B2,C1),
(B2,C2),(B2,C3),(C1,C2),(C1,C3),(C2,C3)等10种不同情况,
其中这两个学生都来自C组有3种不同情况,
∴这两个学生都来自C组的概率$P=\frac{3}{10}$.         …(12分)

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}为等差数列,公差d=2且a2,a4,a5成等比数列.
(1)求{an}的通项公式;
(2)若Sn为{an}的前n项和,求当n为多少时Sn有最小值,并求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(e为自然对数的底数),g(x)=$\frac{a}{2}$x+b(a,b∈R).
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$且a=-4,求h(x)在[0,1]上的最大值;
(2)若a=4时,方程f(x)=g(x)在[0,2]上恰有两个相异实根,求实数b的取值范围;
(3)若b=-$\frac{15}{2}$,a∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数a.(2.71<e<2.72)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若f($\frac{1}{2}$)=0,△ABC的内角A满足f(cosA)<0,则A的取值范围是($\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ln|x-1|+2cosπx(-2≤x≤4)的所有零点之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四个小组的频率以及频率分布直方图中第四个小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=cos(ωx+φ)(ω>0),x=-$\frac{π}{8}$是y=f(x)的零点,直线x=$\frac{3π}{8}$为y=f(x)图象的一条对称轴,且函数f(x)在区间($\frac{π}{12}$,$\frac{5π}{24}$)上单调,则ω的最大值是(  )
A.9B.7C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,1个白球的概率;
(2)采用放回抽样,每次随机取一球,连续取5次,求恰有两次取到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α为第四象限角,且$tanα=-\frac{4}{3}$
(1)求sinα+cosα的值;
(2)求$\frac{sin(π-α)+2cos(π+α)}{{sin(\frac{3}{2}π-α)-cos(\frac{3}{2}π+α)}}$的值.

查看答案和解析>>

同步练习册答案