精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的机坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线两点,求点两点的距离之积.

【答案】12

【解析】试题分析:削去参数得出椭圆的普通方程,利用把极坐标方程化为直角坐标方程;把直线方程写成参数方程,代入到椭圆方程中,利用根与系数关系求出,借助直线的参数方程中参数的几何意义,用表示,并借助,求出结果.

试题解析:

(Ⅰ)曲线化为普通方程为: ,

,得

所以直线的直角坐标方程为 .

(Ⅱ)直线的参数方程为为参数),

代入化简得: ,设两点所对应的参数分别为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量

(1)若,求的值;

(2)令,把函数的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所得图象沿轴向左平移个单位,得到函数的图象,求函数的单调增区间即图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,变量增加一个单位时,平均增加个单位;

③线性回归方程必过);

④在一个列联表中,由计算得,则有以上的把握认为这两个变量间有关系.

其中错误的个数是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2 ,4 ,若圆心C位于第四象限
(1)求圆C的方程;
(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2= ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻“激情工作,快乐数学”的理念,某学校在学习之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 经过点P(2,1),且离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设O为坐标原点,在椭圆短轴上有两点MN满足,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察图,则第几行的各数之和等于20172
A.2017
B.2015
C.1008
D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1),g(x)=lg(1﹣x). (Ⅰ)求函数f(x)+g(x)的定义域;
(Ⅱ)判断函数f(x)+g(x)的奇偶性,并说明理由;
(Ⅲ)判断函数f(x)+g(x)在区间(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是米.

查看答案和解析>>

同步练习册答案