精英家教网 > 高中数学 > 题目详情
利用数学归纳法证明“
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
”的过程中,由“n=k”变成“n=k+1”时,不等式左边的变化是(  )
分析:观察不等式
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
左边的各项,他们都是以
1
n+1
开始,以
1
2n
项结束,共n项,当由n=k到n=k+1时,项数也由k变到k+1时,但前边少了一项,后面多了两项,分析四个答案,即可求出结论.
解答:解:n=k时,左边=
1
k+1
+
1
k+2
+…+
1
k+k

n=k+1时,左边=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
(k+1)+(k+1)

由“n=k”变成“n=k+1”时,
1
2k+1
+
1
2k+2
-
1
k+1

故选D.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
an-2
2an-3
,n∈N*a1=
1
2

(Ⅰ)计算a2,a3,a4;(Ⅱ)猜想数列的通项an,并利用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
1
2
(n>1,n?N*)的过程中,用n=k+1时左边的代数式减去n=k时左边的代数式的结果为(  )
A、
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
C、
1
2k+1
-
1
2(k+1)
D、
1
2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式1+
1
2
+
1
3
+…
1
2n-1
<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=1,且满足关系an-an-1=2(n≥2),
(1)写出a2,a3,a4,的值,并猜想{an}的一个通项公式.
(2)利用数学归纳法证明你的结论.

查看答案和解析>>

同步练习册答案