2£®Ä³½Ìʦ¶ÔÈ«°à50ÃûѧÉúµÄѧϰ»ý¼«ÐԺͶԴý°à¼¶¹¤×÷µÄ̬¶È½øÐÐÁ˵÷²é£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º
»ý¼«²Î¼Ó°à¼¶¹¤×÷²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ºÏ¼Æ
ѧϰ»ý¼«ÐÔ¸ß18a125
ѧϰ»ý¼«ÐÔÒ»°ãa219a4
ºÏ¼Æ24a350
£¨1£©Çó2¡Á2ÁÐÁª±íÖÐa1£¬a2£¬a3£¬a4µÄÖµ£¬²¢ÓöÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨·ÖÎö£ºÊÇ·ñÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°Ñ§ÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйء±£¿ËµÃ÷ÀíÓÉ£»
£¨2£©Ëæ»ú³é²éÕâ¸ö°àµÄ2ÃûѧÉú£¬ÇóÖÁÉÙÓÐ1ÈË»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂÊ£®
¸½£º
P£¨x2¡Ýk£©0.0500.0100.001 x2=$\frac{n£¨ad-bc£©^2}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
k3.8416.63510.828

·ÖÎö £¨1£©¸ù¾ÝÌõ¼þÖÐËù¸øµÄÊý¾Ý£¬µÃ³öa1£¬a2£¬a3£¬a4µÄÖµ£¬°ÑÇóµÃµÄÊý¾Ý´úÈëÇó¹Û²âÖµµÄ¹«Ê½Çó³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϵõ½ÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°Ñ§ÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØϵ¡±£®
£¨2£©Çó³öËæ»ú³é²éÕâ¸ö°àµÄ2ÃûѧÉú£¬¹²ÓÐ${C}_{50}^{2}$ÖÖ²»Í¬µÄ³éÑù·½·¨£¬ÖÁÉÙÓÐ1ÈË»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúÓÐ${C}_{50}^{2}$-${C}_{26}^{2}$ÖÖ·½·¨£¬¼´¿ÉÇó³öÖÁÉÙÓÐ1ÈË»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬a1=7£¬a2=6£¬a3=26£¬a4=25£¬
ÓÉͳ¼ÆÁ¿µÄ¼ÆË㹫ʽK2=$\frac{50¡Á£¨18¡Á19-7¡Á6£©^{2}}{25¡Á25¡Á24¡Á26}$¡Ö11.54£¬
ÓÉÓÚ11.54£¾10.828£¬ËùÒÔÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°Ñ§ÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØϵ¡±£®
£¨2£©Ëæ»ú³é²éÕâ¸ö°àµÄ2ÃûѧÉú£¬¹²ÓÐ${C}_{50}^{2}$ÖÖ²»Í¬µÄ³éÑù·½·¨£¬ÖÁÉÙÓÐ1ÈË»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúÓÐ${C}_{50}^{2}$-${C}_{26}^{2}$ÖÖ·½·¨£¬
ËùÒÔÖÁÉÙÓÐ1ÈË»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂÊΪ1-$\frac{{C}_{26}^{2}}{{C}_{50}^{2}}$=$\frac{36}{49}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²é¸ÅÂʵļÆË㣬±¾Ìâ½âÌâµÄ¹Ø¼üÊǸù¾ÝËù¸øµÄÊý¾ÝÌîÔÚÁÐÁª±íÖУ¬×¢ÒâÊý¾ÝµÄλÖò»Òª³ö´í£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª·ÇÁãÏòÁ¿$\overrightarrow{a}$£¬$\overline{b}$Âú×㣨$\overrightarrow{a}$+$\overrightarrow{b}$£©¡Í£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©£¬Ôò£¨¡¡¡¡£©
A£®$\overrightarrow{a}$=$\overrightarrow{b}$B£®|$\overrightarrow{a}$|=|$\overrightarrow{b}$|C£®$\overrightarrow{a}$¡Í$\overrightarrow{b}$D£®$\overrightarrow{a}$¡Î$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÈÎÒâÊäÈëÇø¼ä[1£¬10]ÖÐʵÊýx£¬ÇóÊä³öx´óÓÚ49µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$\overrightarrow a$¡¢$\overrightarrow b$¡¢$\overrightarrow c$ÊÇͬһƽÃæÄÚµÄÈý¸öÏòÁ¿£¬ÆäÖÐ$\overrightarrow{a}$=£¨1£¬2£©£¬$\overrightarrow{b}$=£¨-2£¬3£©£¬$\overrightarrow{c}$=£¨-2£¬m£©
£¨1£©Èô$\overrightarrow{a}$¡Í£¨$\overrightarrow{b}$+$\overrightarrow{c}$£©£¬Çó|$\overrightarrow{c}$|£»
£¨2£©Èôk$\overrightarrow{a}$+$\overrightarrow{b}$Óë2$\overrightarrow{a}$-$\overrightarrow{b}$¹²Ïߣ¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶þÏîʽ£¨x-$\frac{1}{x}$£©8µÄÕ¹¿ªÊ½ÖÐx4µÄϵÊýÊÇ£¨¡¡¡¡£©
A£®28B£®-28C£®56D£®-56

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½â²»µÈʽ×é$\left\{\begin{array}{l}{\frac{x-2}{x+3}£¼0}\\{{x}^{2}+2x-3¡Ý0}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô¡÷ABCÖУ¬a=2bcosC£¬ÇÒsin2B+sin2C=2sin2A£¬Ôò¸ÃÈý½ÇÐÎÒ»¶¨Îª£¨¡¡¡¡£©
A£®µÈÑüÖ±½ÇÈý½ÇÐÎB£®µÈÑü¶Û½ÇÈý½ÇÐÎ
C£®µÈ±ßÈý½ÇÐÎD£®²»´æÔÚÕâÑùµÄÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=ax+$\frac{b}{x}$+c£¨a£¾0£©£¬g£¨x£©=lnx£¬ÆäÖк¯Êýf£¨x£©µÄͼÏóÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪy=x-1£®
£¨¢ñ£©ÓÃa±íʾ³öb£¬c£»
£¨¢ò£©Èôf£¨x£©¡Ýg£¨x£©ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Ö¤Ã÷£º1+$\frac{1}{2}+\frac{1}{3}+¡­+\frac{1}{n}£¾ln£¨n+1£©+\frac{n}{2£¨n+1£©}$£¨n¡Ý1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬AÊÇÈñ½Ç£¬¡÷ABCµÄÃæ»ýΪ10$\sqrt{3}$£¬ÇÒ$\sqrt{3}b$=2a•sinB£®
£¨1£©ÇóAµÄ´óС£»
£¨2£©Èôa=7£¬Çób+cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸