精英家教网 > 高中数学 > 题目详情
3.设全集U={1,3,5},集合A={1,5},则∁UA={3}.

分析 根据补集的定义写出运算结果即可.

解答 解:全集U={1,3,5},集合A={1,5},
则∁UA={3}.
故答案为:{3}.

点评 本题考查了集合的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.通过$\widehat{{e}_{1}}$,$\widehat{{e}_{2}}$,…,$\widehat{{e}_{n}}$来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为(  )
A.回归分析B.独立性检验分析C.残差分析D.散点图分析

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,等腰梯形ABCD中,AB=4,BC=CD=2,若E、F分别是边BC、AB上的点,且满足$\frac{BE}{BC}$=$\frac{AF}{AB}$=λ,当$\overrightarrow{AE}$•$\overrightarrow{DF}$=0时,则有(  )
A.λ∈($\frac{1}{8}$,$\frac{1}{4}$)B.λ∈($\frac{1}{4}$,$\frac{3}{8}$)C.λ∈($\frac{3}{8}$,$\frac{1}{2}$)D.λ∈($\frac{1}{2}$,$\frac{5}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数y=sin(x-$\frac{π}{12}$)图象上的点P($\frac{π}{4}$,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则(  )
A.t=$\frac{1}{2}$,s的最小值为$\frac{π}{6}$B.t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{6}$
C.t=$\frac{1}{2}$,s的最小值为$\frac{π}{12}$D.t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知y=f(x)是R上的奇函数,f(-1)=-1,且对任意x∈(-∞,0),f(x)=$\frac{1}{x}$f($\frac{x}{x-1}$)都成立.
(1)求f(-$\frac{1}{2}$)、f(-$\frac{1}{3}$)的值;
(2)设an=f($\frac{1}{n}$)(n∈N*),求数列{an}的递推公式和通项公式;
(3)记Tn=a1an+a2an-1+a3an-2+…+ana1,求$\underset{lim}{n→∞}$$\frac{{T}_{n+1}}{{T}_{n}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足f(x+1)=2x+3,若f(m)=3,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中,正确的是④.(填序号)
①若函数f(x)满足f(x)<f(x+1)对一切实数x成立,则f(x)是增函数;
②若函数满足|f(-x)|<|f(x)|对一切实数x成立,则是奇函数或是偶函数;
③若函数f(x)满足f(1-x)=f(x+1)对一切实数x成立,则f(x)的图象关于y轴对称;
④若函数f(x)满足f(1-x)=f(x-1)对一切实数x成立,则f(x)的图象关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-3x+2<0},B={x|3-x>0},则A∩B=(  )
A.(2,3)B.(1,3)C.(1,2)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2017是等差数列4,7,10,13,…的第几项(  )
A.669B.670C.671D.672

查看答案和解析>>

同步练习册答案