【题目】设数列{an}的前n项和是Sn , 若点An(n, )在函数f(x)=﹣x+c的图象上运动,其中c是与x无关的常数,且a1=3(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=a ,求数列{bn}的前n项和Tn的最小值.
【答案】
(1)解:∵点An(n, )在函数f(x)=﹣x+c的图象上运动,其中c是与x无关的常数,且a1=3(n∈N*).
∴ =﹣n+c,即Sn=﹣n2+cn,
∴n=1时,a1=S1=﹣1+c=3,解得c=4.
当n≥2时,an=Sn﹣Sn﹣1=﹣n2+4n﹣[﹣(n﹣1)2+4(n﹣1)]=﹣2n+5,n=1时也成立.
∴an=﹣2n+5.
(2)解:bn=a =a﹣2n+5=﹣2(﹣2n+5)+5=4n﹣5.
∴n=1时,b1=﹣1<0;
n≥2时,bn>0.
因此,当n=1时,数列{bn}的前n项和Tn取得最小值﹣1
【解析】(1)由已知可得: =﹣n+c,即Sn=﹣n2+cn,再利用递推关系即可得出.(2)bn=a =a﹣2n+5=4n﹣5.可知:n=1时,b1=﹣1<0;n≥2时,bn>0.即可得出.
.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).
(1)若点M(6,9)在圆上,求a的值;
(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为( )
A.an=( )n﹣1
B.an=( )n
C.an=
D.an=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.
(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.
(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 +ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别为,点,点在线段的中垂线上.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,直线与的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数y=f(x)的图象关于点 成中心对称,对任意的实数x都有f(x)=﹣f(x+ ),且f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+f(3)+…+f(2014)的值为( )
A.2
B.1
C.﹣1
D.﹣2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com