精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);

(2)若对任意恒成立,求的取值范围。

【答案】(1)单调递减区间为,极小值为22

【解析】试题分析:(1)因为切线的斜率为0,所以由导数几何意义得,求导列式,得,从而导函数零点为,列表分析区间符号得上单调递减,在上单调递增,再由极值定义知当时, 取得极小值.(2)分类变量得,因此构造函数上单调递减,也即上恒成立,再分类变量得得最大值,因此

试题解析:(1)由条件得

曲线在点处的切线与直线垂直,此切线的斜率为0,即,有,得

,由,由

上单调递减,在上单调递增,当时, 取得极小值

的单调递减区间为,极小值为2

2)条件等价于对任意恒成立,

上单调递减,

上恒成立,

恒成立,

(对仅在时成立),

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

I)求函数的单调区间;

II)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

III)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.

(1)若AP⊥AQ,证明:直线PQ过定点,并求出定点的坐标;

(2)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出的值;

(2)利用合情推理的“归纳推理思想”,归纳出之间的关系式,并根据你得到的关系式求出的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln x+ (a∈R).

(1)当a=1时,求f(x)在x∈[1,+∞)内的最小值;

(2)若f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> +…+ (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是矩形,且,若的中点,且

)求证: 平面

)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 为何值时, .①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数有4个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案