精英家教网 > 高中数学 > 题目详情

【题目】圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1、圆O2交点的直线的直角坐标方程

【答案】
(1)

【解答】以极点为原点、极轴为x轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.

x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ,

所以x2+y2=4x、即圆O1的直角坐标方程为x2+y2-4x=0,

同理圆O2的直角坐标方程为x2+y2+4y=0


(2)

解:以极点为原点、极轴为x轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.

解得 或者

即圆O1、圆O2交于点(0,0)和(2,-2),故过交点的直线的直角坐标方程为y=-x


【解析】本题主要考查了圆的极坐标方程,解决问题的关键是将所给极坐标方程转化为普通方程分析计算即可
【考点精析】本题主要考查了圆的参数方程的相关知识点,需要掌握圆的参数方程可表示为才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式,并在给定直角坐标系内画出f(x)在区间[﹣5,5]上的图象;(不用列表描点)

(2)根据已知条件直接写出g(x)的解析式,并说明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数,设其导函数为,当时,恒有,令,则满足的实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)对其定义域内的两个实数x1、x2 , 都满足不等式 ,则称函数f(x)在其定义域内具有性质M.给出下列函数:① ;②y=x2;③y=2x;④y=log2x.其中具有性质M的是(
A.①④
B.②③
C.③④
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:

(I)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(II)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱DE分别是的中点,点E在平面ABD上的射影是的重心

(Ⅰ)求与平面ABD所成角的余弦值

(Ⅱ)求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣ax+b,在点M(1,f(1))处的切线方程为9x+3y﹣10=0,求
(1)实数a,b的值;
(2)函数f(x)的单调区间以及在区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点(2,1)且关于轴对称.

(1)求抛物线的方程;

(2)已知圆过定点,圆心在抛物线上运动,且圆轴交于两点,设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性

2)若有两个零点,求 的取值范围.

查看答案和解析>>

同步练习册答案