精英家教网 > 高中数学 > 题目详情

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

爱好

40

20

60

不爱好

20

30

50

60

50

110

根据上述数据能得出的结论是(
(参考公式与数据:X2= .当X2>3.841时,有95%的把握说事件A与B有关;当X2>6.635时,有99%的把握说事件A与B有关; 当X2<3.841时认为事件A与B无关.)
A.有99%的把握认为“爱好该项运动与性别有关”
B.有99%的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”.

【答案】A
【解析】解:由题意知本题所给的观测值,X2= ≈7.8
∵7.8>6.635,
∴这个结论有0.010的机会说错,
即有99%的把握认为“爱好该项运动与性别有关.
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1
(1)求与双曲线C1有相同焦点,且过点P(4, )的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当 =3时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[﹣1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<6},B={y|y=2x , 2≤x<3},U=R.
(1)求A∪B;
(2)求(UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=2x2+bx+c在 上是减函数,在 上是增函数,且两个零点x1 , x2满足|x1﹣x2|=2,求二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示三角形数阵中,aij为第i行第j个数,若amn=2017,则实数对(m,n)为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是奇函数,当x>0时,f(x)=ax(x>0且a≠1),且f(log 4)=﹣3,则a的值为(
A.
B.3
C.9
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的参数方程为为参数),以直角坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)将圆的参数方程化为普通方程,再化为极坐标方程;

(Ⅱ)若点在直线上,当点到圆的距离最小时,求点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx.
(1)当a=1时,求函数f(x)的极值;
(2)设定义在D上的函数y=g(x)在点P(x0 , y0)处的切线方程为l:y=h(x).当x≠x0时,若 >0在D内恒成立,则称P为函数y=g(x)的“转点”.当a=8时,问函数y=f(x)是否存在“转点”?若存在,求出“转点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案