精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且
π
4
<α<
π
3
,则双曲线的离心率的取值范围是(  )
A、(1,
2
)
B、(
2
,2)
C、(1,2)
D、(2,2
2
)
分析:先表示出渐近线方程,利用求得tanα=
b
a
,根据α的范围确定tanα范围,进而确定
b
a
的范围,同时利用c=
a2+b2
转化成a和c的不等式关系求得
c
a
的范围,即离心率的范围.
解答:解:∵双曲线的焦点在x轴上,故其渐近线方程为y=
b
a
x
则tanα=
b
a

π
4
<α<
π
3

∴1<tanα<
3
,即1<
b
a
3

∴1<
b2
a2
=
c2-a2
a 2
<3求得
2
c
a
<2
故选B.
点评:本题主要考查了双曲线的简单性质.考查了学生对双曲线基础知识的理解和运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
2
,且过点(4,-
10
)
,则双曲线的标准方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点为F1(5,0),F2(-5,0),且过点(3,0),
(1)求双曲线的标准方程.
(2)求双曲线的离心率及准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)

(1)求双曲线方程;
(2)设A点坐标为(0,2),求双曲线上距点A最近的点P的坐标及相应的距离|PA|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)
,A点坐标为(0,2),则双曲线上距点A距离最短的点的坐标是
7
,1)
7
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知双曲线的中心在原点,焦点在x轴上,一条渐近线方程为y=
3
4
x
,则该双曲线的离心率是
5
4
5
4

查看答案和解析>>

同步练习册答案