精英家教网 > 高中数学 > 题目详情

【题目】某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.

(1)若该蛋糕店一天生产30个这种面包,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;

(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得下表:

日需求量

28

29

30

31

32

33

频数

3

4

6

6

7

4

假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差.

【答案】(1) ,.

(2)平均数为59,方差为3.8.

【解析】

1)当需求量小于30,利润为卖出的利润减去亏损的部分;当需求量大于等于30,利润即为30个面包的利润;

2)将需求量代入解析式求出利润,再利用平均数公式及方差公式运算即可

1)由题,,

,,

所以,

(2)由题,则

利润

54

57

60

60

60

60

频数

3

4

6

6

7

4

所以平均数为

方差为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点M到定点的距离和它到直线的距离的比是常数

1)求动点M的轨迹方程;

2)令(1)中方程表示曲线C,点S20),过点B10)的直线l与曲线C相交于PQ两点,求△PQS的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:

选择意愿

人员结构

40岁以上(含40岁)男性

40岁以上(含40岁)女性

40岁以下男性

40岁以下女性

选择甲公司

110

120

140

80

选择乙公司

150

90

200

110

若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k15.5513,测得出选择意愿与年龄有关系的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个村庄ABC构成一个三角形,且AB=5千米,BC=12千米,AC=13千米.为了方便市民生活,现在ABC内任取一点M建一大型生活超市,则MABC的距离都不小于2千米的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是我国南北朝时代的伟大科学家,在数学上有突出贡献,他在实践的基础上提出了体积计算原理(祖暅原理):幂势既同,则积不容异.教材中的探究与发现利用祖暅原理将半球的体积转化为一个圆柱与一个圆锥的体积之差,从而得出球的体积计算公式.如图(1)是一种四脚帐篷的示意图,用任意平行于帐篷底面的平面截帐篷,得截面四边形为正方形,该帐篷的三视图如图(2)所示,其中正视图的投影线方向垂直于平面,正视图和侧视图中的曲线均为半径为1的半圆.模仿上述球的体积计算方法,得该帐篷的体积为( ).

图(1 图(2

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:),数列满足:),数列的前项和为

1)求数列的通项公式;

2)求证:数列是等比数列;

3)求证:数列是递增数列;若当且仅当时,取得最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个命题:①若x23x+20,则x1x2;②若xy0,则x2+y20;③已知xyN,若x+y是奇数,则xy中一个是奇数,一个是偶数;④若x1x2是方程x22x+20的两根,则x1x2可以是一椭圆与一双曲线的离心率,那么(   )

A.③的否命题为假B.①的逆否命题为假

C.②的逆命题为真D.④的逆否命题为假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案