精英家教网 > 高中数学 > 题目详情
5.下列四个结论中:正确结论的个数是
①若x∈R,则$tanx=\sqrt{3}$是$x=\frac{π}{3}$的充分不必要条件;
②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;
③若向量$\overrightarrow a\;,\;\overrightarrow b$满足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$,则$\overrightarrow a∥\overrightarrow b$恒成立;(  )
A.1个B.2个C.3个D.0个

分析 ①,若x∈R,由$tanx=\sqrt{3}$⇒$x=\frac{π}{3}$+kπ;
②,命题的逆命题只交换条件和结论;
③,若向量$\overrightarrow a\;,\;\overrightarrow b$满足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$⇒cosθ=±1(θ为$\overrightarrow{a}、\overrightarrow{b}$的夹角);

解答 解:对于①,若x∈R,由$tanx=\sqrt{3}$⇒$x=\frac{π}{3}$+kπ,应是必要不充分条件,故错;
对于②,命题“若x-sinx=0,则x=0”的逆命题为“若x=0,则x-sinx=0”,故错;
对于③,若向量$\overrightarrow a\;,\;\overrightarrow b$满足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$⇒cosθ=±1(θ为$\overrightarrow{a}、\overrightarrow{b}$的夹角)则$\overrightarrow a∥\overrightarrow b$恒成立,故正确;
故选:A.

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|;
(1)用分段函数表示出f(x)的解析式;
(2)画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x>0,都有x≥1”的否定为?x>0,使得x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,直线x-y+2=0截以原点O为圆心的圆所得的弦长为2$\sqrt{2}$,
(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于点D,E,求|DE|的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知曲线f(x)=2x2+1在点M(x0,y0)处的瞬时变化率为-4,则点M的坐标为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y都是正数,且lnx+lny=ln(x+y),则4x+y的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

同步练习册答案