精英家教网 > 高中数学 > 题目详情

【题目】若f(x+1)的定义域为[0,1],则函数f(2x﹣2)的定义域为(
A.[log23,2]
B.[0,1]
C.
D.[0,2]

【答案】A
【解析】解:∵f(x+1)的定义域为[0,1], ∴0≤x≤1,
∴1≤x+1≤2,
f(x)的定义域为[1,2],
∴1≤2x﹣2≤2,
解得:log23≤x≤2,
故选:A.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an﹣1(n∈N+),a1=2.
(1)求证:数列{an﹣1}为等比数列,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 与向量 =(2,﹣1,2)共线,且满足 =18,(k + )⊥(k ),求向量 及k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=cos2x+asinx在区间( )是减函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)设函数h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ ]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点, ,求m的值;
(3)在(2)的条件下,定点A(1,0),P在线段MN上运动,求直线AP的斜率取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围.

查看答案和解析>>

同步练习册答案