精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法错误的是( )

A. 若“”为假命题,则pq均为假命题

B. ”是“”的充分不必要条件

C. ”的必要不充分条件是“

D. 若命题p,则命题

【答案】C

【解析】

根据复合命题的之间判定的真值表,可判定A;根据充要条件的定义,可判定B、C,根据存在性命题的否定,可得判定D,得到答案.

由题意,对于A中,若为假命题,根据复合命题的真值表,可得pq均为假命题,所以A是正确的;

对于B中,是成立的,但当“”时,“”不一定是成立的,所以是的充分不必要条件,所以B是正确的;

对于C中,时,不一定成立,而“”时,“”是成立的,所以的充分不必要条件是是错误的;

对于D中,根据存在性命题的否定可知,命题p,则命题正确的,所以D是正确的;

综上可知,错误的为C,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求曲线在点处的切线方程;

(2)当时,判断方程在区间上有无实根;

(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等腰直角三角形的斜边所在直线方程为,其中点在点上方,直角顶点的坐标为

(1)求边上的高线所在直线的方程;

(2)求等腰直角三角形的外接圆的标准方程;

(3)分别求两直角边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,直线l过点P(1,2).

(1)若直线lx轴和y轴上的截距相等,求直线l的方程;

(2)求坐标原点O到直线l距离取最大值时的直线l的方程;

(3)设直线lx轴正半轴、y轴正半轴分别相交于AB两点,当|PA||PB|最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

2)估算该市80岁及以上长者占全市户籍人口的百分比;

3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外发放生活补贴100元.

利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点OAC中点,平面AA1C1C⊥平面ABC

(1)证明:A1O⊥平面ABC

(2)求直线AB与平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F为抛物线的焦点,ABC为该抛物线上三点,若,则= ( )

A. 9 B. 6 C. 4 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

同步练习册答案