精英家教网 > 高中数学 > 题目详情
1.若直线y=x+t与曲线y=ex相切,则t=1.

分析 设切点为(x0,y0),求出导数,求出切线斜率,利用切点在直线上,代入方程,即可得到结论.

解答 解:设切点为(x0,y0),则y0=ex0
∵y′=(ex)′=ex,∴切线斜率k=ex0
又点(x0,y0)在直线上,代入方程得y0=t+x0
由ex0=1,
解得x0=0,y0=1,
∴t=1.
故答案为:1.

点评 本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数y=3tan($\frac{π}{6}$-$\frac{x}{4}$)的最小正周期是(  )
A.B.C.D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知tanα=-2,则$\frac{{2{{sin}^2}α+1}}{{{{sin}^2}α-{{cos}^2}α}}$的值等于$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)与g(x)=2cos(2x-$\frac{π}{4}$)的对称轴完全相同,则函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)在[0,π]上的递增区间是 (  )
A.[0,$\frac{π}{8}$]B.[0,$\frac{π}{4}$]C.[$\frac{π}{8}$,π]D.[$\frac{π}{4}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设等差数列{an}的前n项和为Sn,已知S7=7,S15=75,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{S_n}{n}$,求证数列{bn}是等差数列,并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.利用计算机产生0~1之间的均匀随机数a,b,则事件“$\left\{\begin{array}{l}{3a-1>0}\\{3b-1>0}\end{array}\right.$”发生的概率为(  )
A.$\frac{4}{9}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函数y=f(-2x)+1的最小正周期和单调递减区间;
(2)已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=8,sinB+sinC=$\frac{{13\sqrt{3}}}{16}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-ax在(-∞,-1]上递增,则a的取值范围是(  )
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足递推关系an=2an-1+3(n∈N*),且a1=-2,则a4=5.

查看答案和解析>>

同步练习册答案