精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .
(Ⅰ)若函数 有极值,求实数 的取值范围;
(Ⅱ)当 有两个极值点(记为 )时,求证:

【答案】解:(Ⅰ)由已知得 ,且有

在方程 中,

①当 ,即 时, 恒成立

此时 上单调递增,∴函数 无极值;

②当 ,即 时,方程 有两个不相等的实数根:

且∵ ,∴

∵当 时, ;当 时,

∴函数 上单调递减

上单调递增.

∴函数 存在极值

综上得:当函数 存在极值时,实数 的取值范围是

(Ⅱ)∵ 的两个极值点,故满足方程

的两个解,∴

而在 中,

欲证原不等式成立,只需证明

,只需证明 成立

即证 成立

,则

时, ,函数 上单调递增;

时, ,函数 上单调递减;

因此 ,故 ,即 成立得证


【解析】(1)对于含参数的函数求出导函数,得到含参导方程,讨论方程实根得到有极值时参数a的范围。
(2)证明与极值点有关的不等式,利用极值点是导方程的实根,将a消去从而将不等式转化为不含a的不等式,再通过求导用单调性结合最值证明所得不等式。
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

(1).求家庭的月储蓄对月收入的线性回归方程

(2).判断变量之间的正相关还是负相关;

(3).若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:回归直线的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )

A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”

B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”

C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”

D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出所有满足的值;若不是,请说明事由.

2)若是定义在区间上的“局部奇函数”,求实数的取值范围.

3)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是菱形所在平面外一点, 是等边三角形, 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一几何体按比例绘制的三视图如图所示:

(1)试画出它的直观图;

(2)求它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:

价格x

5

5.5

6.5

7

销售量y

12

10

6

4

通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, = =146.5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.897

10.828

K2的观测值:k= (其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:

对服务好评

对服务不满意

合计

对商品好评

a=80

对商品不满意

d=10

合计

n=200

查看答案和解析>>

同步练习册答案